Exemplo n.º 1
0
def statistics_linear_time_mmd_kernel_choice():
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Features import MeanShiftRealDataGenerator
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Statistics import LinearTimeMMD
    from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

    # note that the linear time statistic is designed for much larger datasets
    n = 50000
    dim = 5
    difference = 2

    # use data generator class to produce example data
    # in pratice, this generate data function could be replaced by a method
    # that obtains data from a stream
    data = DataGenerator.generate_mean_data(n, dim, difference)

    print "dimension means of X", mean(data.T[0:n].T)
    print "dimension means of Y", mean(data.T[n:2 * n + 1].T)

    # create kernels/features to choose from
    # here: just a bunch of Gaussian Kernels with different widths
    # real sigmas are 2^-5, ..., 2^10
    sigmas = array([pow(2, x) for x in range(-5, 10)])

    # shogun has a different parametrization of the Gaussian kernel
    shogun_sigmas = array([x * x * 2 for x in sigmas])

    # We will use multiple kernels
    kernel = CombinedKernel()

    # two separate feature objects here, could also be one with appended data
    features = CombinedFeatures()

    # all kernels work on same features
    for i in range(len(sigmas)):
        kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
        features.append_feature_obj(RealFeatures(data))

    mmd = LinearTimeMMD(kernel, features, n)

    print "start learning kernel weights"
    mmd.set_opt_regularization_eps(10E-5)
    mmd.set_opt_low_cut(10E-5)
    mmd.set_opt_max_iterations(1000)
    mmd.set_opt_epsilon(10E-7)
    mmd.optimize_kernel_weights()
    weights = kernel.get_subkernel_weights()
    print "learned weights:", weights
    #pyplot.plot(array(range(len(sigmas))), weights)
    #pyplot.show()
    print "index of max weight", weights.argmax()
Exemplo n.º 2
0
def statistics_linear_time_mmd ():
	from shogun.Features import RealFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel
	from shogun.Statistics import LinearTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN
	from shogun.Distance import EuclideanDistance
	from shogun.Mathematics import Statistics, Math

	# note that the linear time statistic is designed for much larger datasets
	n=10000
	dim=2
	difference=0.5

	# use data generator class to produce example data
	# in pratice, this generate data function could be replaced by a method
	# that obtains data from a stream
	data=DataGenerator.generate_mean_data(n,dim,difference)
	
	print "dimension means of X", mean(data.T[0:n].T)
	print "dimension means of Y", mean(data.T[n:2*n+1].T)

	# create shogun feature representation
	features=RealFeatures(data)

	# compute median data distance in order to use for Gaussian kernel width
	# 0.5*median_distance normally (factor two in Gaussian kernel)
	# However, shoguns kernel width is different to usual parametrization
	# Therefore 0.5*2*median_distance^2
	# Use a subset of data for that, only 200 elements. Median is stable
	# Using all distances here would blow up memory
	subset=Math.randperm_vec(features.get_num_vectors())
	subset=subset[0:200]
	features.add_subset(subset)
	dist=EuclideanDistance(features, features)
	distances=dist.get_distance_matrix()
	features.remove_subset()
	median_distance=Statistics.matrix_median(distances, True)
	sigma=median_distance**2
	print "median distance for Gaussian kernel:", sigma
	kernel=GaussianKernel(10,sigma)

	mmd=LinearTimeMMD(kernel,features, n)

	# perform test: compute p-value and test if null-hypothesis is rejected for
	# a test level of 0.05
	statistic=mmd.compute_statistic()
	print "test statistic:", statistic
	
	# do the same thing using two different way to approximate null-dstribution
	# bootstrapping and gaussian approximation (ony for really large samples)
	alpha=0.05

	print "computing p-value using bootstrapping"
	mmd.set_null_approximation_method(BOOTSTRAP)
	mmd.set_bootstrap_iterations(50) # normally, far more iterations are needed
	p_value=mmd.compute_p_value(statistic)
	print "p_value:", p_value
	print "p_value <", alpha, ", i.e. test sais p!=q:", p_value<alpha
	
	print "computing p-value using gaussian approximation"
	mmd.set_null_approximation_method(MMD1_GAUSSIAN)
	p_value=mmd.compute_p_value(statistic)
	print "p_value:", p_value
	print "p_value <", alpha, ", i.e. test sais p!=q:", p_value<alpha
	
	# sample from null distribution (these may be plotted or whatsoever)
	# mean should be close to zero, variance stronly depends on data/kernel
	mmd.set_null_approximation_method(BOOTSTRAP)
	mmd.set_bootstrap_iterations(10) # normally, far more iterations are needed
	null_samples=mmd.bootstrap_null()
	print "null mean:", mean(null_samples)
	print "null variance:", var(null_samples)
# Therefore 0.5*2*median_distance^2
# Use a subset of data for that, only 200 elements. Median is stable
# Using all distances here would blow up memory
subset = Math.randperm_vec(features.get_num_vectors())
subset = subset[0:200]
features.add_subset(subset)
dist = EuclideanDistance(features, features)
distances = dist.get_distance_matrix()
features.remove_subset()
median_distance = Statistics.matrix_median(distances, True)
sigma = median_distance**2
print "median distance for Gaussian kernel:", sigma
kernel = GaussianKernel(10, sigma)

# use biased statistic
mmd = LinearTimeMMD(kernel, features, m)

# sample alternative distribution
alt_samples = zeros(num_null_samples)
for i in range(len(alt_samples)):
    data = DataGenerator.generate_mean_data(m, dim, difference)
    features.set_feature_matrix(data)
    alt_samples[i] = mmd.compute_statistic()

# sample from null distribution
# bootstrapping, biased statistic
mmd.set_null_approximation_method(BOOTSTRAP)
mmd.set_bootstrap_iterations(num_null_samples)
null_samples_boot = mmd.bootstrap_null()

# fit normal distribution to null and sample a normal distribution
Exemplo n.º 4
0
def statistics_linear_time_mmd():
    from shogun.Features import RealFeatures
    from shogun.Features import MeanShiftRealDataGenerator
    from shogun.Kernel import GaussianKernel
    from shogun.Statistics import LinearTimeMMD
    from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN
    from shogun.Distance import EuclideanDistance
    from shogun.Mathematics import Statistics, Math

    # note that the linear time statistic is designed for much larger datasets
    n = 10000
    dim = 2
    difference = 0.5

    # streaming data generator for mean shift distributions
    gen_p = MeanShiftRealDataGenerator(0, dim)
    gen_q = MeanShiftRealDataGenerator(difference, dim)

    # compute median data distance in order to use for Gaussian kernel width
    # 0.5*median_distance normally (factor two in Gaussian kernel)
    # However, shoguns kernel width is different to usual parametrization
    # Therefore 0.5*2*median_distance^2
    # Use a subset of data for that, only 200 elements. Median is stable

    # Stream examples and merge them in order to compute median on joint sample
    features = gen_p.get_streamed_features(100)
    features = features.create_merged_copy(gen_q.get_streamed_features(100))

    # compute all pairwise distances
    dist = EuclideanDistance(features, features)
    distances = dist.get_distance_matrix()

    # compute median and determine kernel width (using shogun)
    median_distance = Statistics.matrix_median(distances, True)
    sigma = median_distance**2
    print "median distance for Gaussian kernel:", sigma
    kernel = GaussianKernel(10, sigma)

    # mmd instance using streaming features, blocksize of 10000
    mmd = LinearTimeMMD(kernel, gen_p, gen_q, n, 10000)

    # perform test: compute p-value and test if null-hypothesis is rejected for
    # a test level of 0.05
    statistic = mmd.compute_statistic()
    print "test statistic:", statistic

    # do the same thing using two different way to approximate null-dstribution
    # bootstrapping and gaussian approximation (ony for really large samples)
    alpha = 0.05

    print "computing p-value using bootstrapping"
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_bootstrap_iterations(
        50)  # normally, far more iterations are needed
    p_value = mmd.compute_p_value(statistic)
    print "p_value:", p_value
    print "p_value <", alpha, ", i.e. test sais p!=q:", p_value < alpha

    print "computing p-value using gaussian approximation"
    mmd.set_null_approximation_method(MMD1_GAUSSIAN)
    p_value = mmd.compute_p_value(statistic)
    print "p_value:", p_value
    print "p_value <", alpha, ", i.e. test sais p!=q:", p_value < alpha

    # sample from null distribution (these may be plotted or whatsoever)
    # mean should be close to zero, variance stronly depends on data/kernel
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_bootstrap_iterations(
        10)  # normally, far more iterations are needed
    null_samples = mmd.bootstrap_null()
    print "null mean:", mean(null_samples)
    print "null variance:", var(null_samples)
Exemplo n.º 5
0
def statistics_mmd_kernel_selection_combined(m, distance, stretch, num_blobs,
                                             angle, selection_method):
    from shogun.Features import RealFeatures
    from shogun.Features import GaussianBlobsDataGenerator
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Statistics import LinearTimeMMD
    from shogun.Statistics import MMDKernelSelectionCombMaxL2
    from shogun.Statistics import MMDKernelSelectionCombOpt
    from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN
    from shogun.Distance import EuclideanDistance
    from shogun.Mathematics import Statistics, Math

    # init seed for reproducability
    Math.init_random(1)

    # note that the linear time statistic is designed for much larger datasets
    # results for this low number will be bad (unstable, type I error wrong)

    # streaming data generator
    gen_p = GaussianBlobsDataGenerator(num_blobs, distance, 1, 0)
    gen_q = GaussianBlobsDataGenerator(num_blobs, distance, stretch, angle)

    # stream some data and plot
    num_plot = 1000
    features = gen_p.get_streamed_features(num_plot)
    features = features.create_merged_copy(
        gen_q.get_streamed_features(num_plot))
    data = features.get_feature_matrix()

    #figure()
    #subplot(2,2,1)
    #grid(True)
    #plot(data[0][0:num_plot], data[1][0:num_plot], 'r.', label='$x$')
    #title('$X\sim p$')
    #subplot(2,2,2)
    #grid(True)
    #plot(data[0][num_plot+1:2*num_plot], data[1][num_plot+1:2*num_plot], 'b.', label='$x$', alpha=0.5)
    #title('$Y\sim q$')

    # create combined kernel with Gaussian kernels inside (shoguns Gaussian kernel is
    # different to the standard form, see documentation)
    sigmas = [2**x for x in range(-3, 10)]
    widths = [x * x * 2 for x in sigmas]
    combined = CombinedKernel()
    for i in range(len(sigmas)):
        combined.append_kernel(GaussianKernel(10, widths[i]))

    # mmd instance using streaming features, blocksize of 10000
    block_size = 10000
    mmd = LinearTimeMMD(combined, gen_p, gen_q, m, block_size)

    # kernel selection instance (this can easily replaced by the other methods for selecting
    # combined kernels
    if selection_method == "opt":
        selection = MMDKernelSelectionCombOpt(mmd)
    elif selection_method == "l2":
        selection = MMDKernelSelectionCombMaxL2(mmd)

    # perform kernel selection (kernel is automatically set)
    kernel = selection.select_kernel()
    kernel = CombinedKernel.obtain_from_generic(kernel)
    #print "selected kernel weights:", kernel.get_subkernel_weights()
    #subplot(2,2,3)
    #plot(kernel.get_subkernel_weights())
    #title("Kernel weights")

    # compute tpye I and II error (use many more trials). Type I error is only
    # estimated to check MMD1_GAUSSIAN method for estimating the null
    # distribution. Note that testing has to happen on difference data than
    # kernel selecting, but the linear time mmd does this implicitly
    mmd.set_null_approximation_method(MMD1_GAUSSIAN)

    # number of trials should be larger to compute tight confidence bounds
    num_trials = 5
    alpha = 0.05  # test power
    typeIerrors = [0 for x in range(num_trials)]
    typeIIerrors = [0 for x in range(num_trials)]
    for i in range(num_trials):
        # this effectively means that p=q - rejecting is tpye I error
        mmd.set_simulate_h0(True)
        typeIerrors[i] = mmd.perform_test() > alpha
        mmd.set_simulate_h0(False)

        typeIIerrors[i] = mmd.perform_test() > alpha

    #print "type I error:", mean(typeIerrors), ", type II error:", mean(typeIIerrors)

    return kernel, typeIerrors, typeIIerrors
Exemplo n.º 6
0
# Stream examples and merge them in order to compute median on joint sample
features=gen_p.get_streamed_features(100)
features=features.create_merged_copy(gen_q.get_streamed_features(100))

# compute all pairwise distances
dist=EuclideanDistance(features, features)
distances=dist.get_distance_matrix()

# compute median and determine kernel width (using shogun)
median_distance=Statistics.matrix_median(distances, True)
sigma=median_distance**2
print "median distance for Gaussian kernel:", sigma
kernel=GaussianKernel(10,sigma)

# mmd instance using streaming features, blocksize of 10000
mmd=LinearTimeMMD(kernel, gen_p, gen_q, m, 10000)

# sample alternative distribution, stream ensures different samples each run
alt_samples=zeros(num_null_samples)
for i in range(len(alt_samples)):
	alt_samples[i]=mmd.compute_statistic()

# sample from null distribution
# bootstrapping, biased statistic
mmd.set_null_approximation_method(BOOTSTRAP)
mmd.set_bootstrap_iterations(num_null_samples)
null_samples_boot=mmd.bootstrap_null()

# fit normal distribution to null and sample a normal distribution
mmd.set_null_approximation_method(MMD1_GAUSSIAN)
variance=mmd.compute_variance_estimate()
Exemplo n.º 7
0
def statistics_linear_time_mmd(n, dim, difference):
    from shogun.Features import RealFeatures
    from shogun.Features import MeanShiftDataGenerator
    from shogun.Kernel import GaussianKernel
    from shogun.Statistics import LinearTimeMMD
    from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN
    from shogun.Distance import EuclideanDistance
    from shogun.Mathematics import Statistics, Math

    # init seed for reproducability
    Math.init_random(1)

    # note that the linear time statistic is designed for much larger datasets
    # so increase to get reasonable results

    # streaming data generator for mean shift distributions
    gen_p = MeanShiftDataGenerator(0, dim)
    gen_q = MeanShiftDataGenerator(difference, dim)

    # compute median data distance in order to use for Gaussian kernel width
    # 0.5*median_distance normally (factor two in Gaussian kernel)
    # However, shoguns kernel width is different to usual parametrization
    # Therefore 0.5*2*median_distance^2
    # Use a subset of data for that, only 200 elements. Median is stable

    # Stream examples and merge them in order to compute median on joint sample
    features = gen_p.get_streamed_features(100)
    features = features.create_merged_copy(gen_q.get_streamed_features(100))

    # compute all pairwise distances
    dist = EuclideanDistance(features, features)
    distances = dist.get_distance_matrix()

    # compute median and determine kernel width (using shogun)
    median_distance = Statistics.matrix_median(distances, True)
    sigma = median_distance**2
    #print "median distance for Gaussian kernel:", sigma
    kernel = GaussianKernel(10, sigma)

    # mmd instance using streaming features, blocksize of 10000
    mmd = LinearTimeMMD(kernel, gen_p, gen_q, n, 10000)

    # perform test: compute p-value and test if null-hypothesis is rejected for
    # a test level of 0.05
    statistic = mmd.compute_statistic()
    #print "test statistic:", statistic

    # do the same thing using two different way to approximate null-dstribution
    # bootstrapping and gaussian approximation (ony for really large samples)
    alpha = 0.05

    #print "computing p-value using bootstrapping"
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_bootstrap_iterations(
        50)  # normally, far more iterations are needed
    p_value_boot = mmd.compute_p_value(statistic)
    #print "p_value_boot:", p_value_boot
    #print "p_value_boot <", alpha, ", i.e. test sais p!=q:", p_value_boot<alpha

    #print "computing p-value using gaussian approximation"
    mmd.set_null_approximation_method(MMD1_GAUSSIAN)
    p_value_gaussian = mmd.compute_p_value(statistic)
    #print "p_value_gaussian:", p_value_gaussian
    #print "p_value_gaussian <", alpha, ", i.e. test sais p!=q:", p_value_gaussian<alpha

    # sample from null distribution (these may be plotted or whatsoever)
    # mean should be close to zero, variance stronly depends on data/kernel
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_bootstrap_iterations(
        10)  # normally, far more iterations are needed
    null_samples = mmd.bootstrap_null()
    #print "null mean:", mean(null_samples)
    #print "null variance:", var(null_samples)

    # compute type I and type II errors for Gaussian approximation
    # number of trials should be larger to compute tight confidence bounds
    mmd.set_null_approximation_method(MMD1_GAUSSIAN)
    num_trials = 5
    alpha = 0.05  # test power
    typeIerrors = [0 for x in range(num_trials)]
    typeIIerrors = [0 for x in range(num_trials)]
    for i in range(num_trials):
        # this effectively means that p=q - rejecting is tpye I error
        mmd.set_simulate_h0(True)
        typeIerrors[i] = mmd.perform_test() > alpha
        mmd.set_simulate_h0(False)

        typeIIerrors[i] = mmd.perform_test() > alpha

    #print "type I error:", mean(typeIerrors), ", type II error:", mean(typeIIerrors)

    return statistic, p_value_boot, p_value_gaussian, null_samples, typeIerrors, typeIIerrors
def linear_time_mmd_graphical():

    # parameters, change to get different results
    m = 1000  # set to 10000 for a good test result
    dim = 2

    # setting the difference of the first dimension smaller makes a harder test
    difference = 1

    # number of samples taken from null and alternative distribution
    num_null_samples = 150

    # streaming data generator for mean shift distributions
    gen_p = MeanShiftDataGenerator(0, dim)
    gen_q = MeanShiftDataGenerator(difference, dim)

    # use the median kernel selection
    # create combined kernel with Gaussian kernels inside (shoguns Gaussian kernel is
    # compute median data distance in order to use for Gaussian kernel width
    # 0.5*median_distance normally (factor two in Gaussian kernel)
    # However, shoguns kernel width is different to usual parametrization
    # Therefore 0.5*2*median_distance^2
    # Use a subset of data for that, only 200 elements. Median is stable
    sigmas = [2**x for x in range(-3, 10)]
    widths = [x * x * 2 for x in sigmas]
    print "kernel widths:", widths
    combined = CombinedKernel()
    for i in range(len(sigmas)):
        combined.append_kernel(GaussianKernel(10, widths[i]))

    # mmd instance using streaming features, blocksize of 10000
    block_size = 1000
    mmd = LinearTimeMMD(combined, gen_p, gen_q, m, block_size)

    # kernel selection instance (this can easily replaced by the other methods for selecting
    # single kernels
    selection = MMDKernelSelectionOpt(mmd)

    # perform kernel selection
    kernel = selection.select_kernel()
    kernel = GaussianKernel.obtain_from_generic(kernel)
    mmd.set_kernel(kernel)
    print "selected kernel width:", kernel.get_width()

    # sample alternative distribution, stream ensures different samples each run
    alt_samples = zeros(num_null_samples)
    for i in range(len(alt_samples)):
        alt_samples[i] = mmd.compute_statistic()

    # sample from null distribution
    # bootstrapping, biased statistic
    mmd.set_null_approximation_method(BOOTSTRAP)
    mmd.set_bootstrap_iterations(num_null_samples)
    null_samples_boot = mmd.bootstrap_null()

    # fit normal distribution to null and sample a normal distribution
    mmd.set_null_approximation_method(MMD1_GAUSSIAN)
    variance = mmd.compute_variance_estimate()
    null_samples_gaussian = normal(0, sqrt(variance), num_null_samples)

    # to plot data, sample a few examples from stream first
    features = gen_p.get_streamed_features(m)
    features = features.create_merged_copy(gen_q.get_streamed_features(m))
    data = features.get_feature_matrix()

    # plot
    figure()

    # plot data of p and q
    subplot(2, 3, 1)
    grid(True)
    gca().xaxis.set_major_locator(
        MaxNLocator(nbins=4))  # reduce number of x-ticks
    gca().yaxis.set_major_locator(
        MaxNLocator(nbins=4))  # reduce number of x-ticks
    plot(data[0][0:m], data[1][0:m], 'ro', label='$x$')
    plot(data[0][m + 1:2 * m],
         data[1][m + 1:2 * m],
         'bo',
         label='$x$',
         alpha=0.5)
    title('Data, shift in $x_1$=' + str(difference) + '\nm=' + str(m))
    xlabel('$x_1, y_1$')
    ylabel('$x_2, y_2$')

    # histogram of first data dimension and pdf
    subplot(2, 3, 2)
    grid(True)
    gca().xaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    gca().yaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    hist(data[0], bins=50, alpha=0.5, facecolor='r', normed=True)
    hist(data[1], bins=50, alpha=0.5, facecolor='b', normed=True)
    xs = linspace(min(data[0]) - 1, max(data[0]) + 1, 50)
    plot(xs, normpdf(xs, 0, 1), 'r', linewidth=3)
    plot(xs, normpdf(xs, difference, 1), 'b', linewidth=3)
    xlabel('$x_1, y_1$')
    ylabel('$p(x_1), p(y_1)$')
    title('Data PDF in $x_1, y_1$')

    # compute threshold for test level
    alpha = 0.05
    null_samples_boot.sort()
    null_samples_gaussian.sort()
    thresh_boot = null_samples_boot[floor(
        len(null_samples_boot) * (1 - alpha))]
    thresh_gaussian = null_samples_gaussian[floor(
        len(null_samples_gaussian) * (1 - alpha))]

    type_one_error_boot = sum(
        null_samples_boot < thresh_boot) / float(num_null_samples)
    type_one_error_gaussian = sum(
        null_samples_gaussian < thresh_boot) / float(num_null_samples)

    # plot alternative distribution with threshold
    subplot(2, 3, 4)
    grid(True)
    gca().xaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    gca().yaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    hist(alt_samples, 20, normed=True)
    axvline(thresh_boot, 0, 1, linewidth=2, color='red')
    type_two_error = sum(alt_samples < thresh_boot) / float(num_null_samples)
    title('Alternative Dist.\n' + 'Type II error is ' + str(type_two_error))

    # compute range for all null distribution histograms
    hist_range = [
        min([min(null_samples_boot),
             min(null_samples_gaussian)]),
        max([max(null_samples_boot),
             max(null_samples_gaussian)])
    ]

    # plot null distribution with threshold
    subplot(2, 3, 3)
    grid(True)
    gca().xaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    gca().yaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    hist(null_samples_boot, 20, range=hist_range, normed=True)
    axvline(thresh_boot, 0, 1, linewidth=2, color='red')
    title('Bootstrapped Null Dist.\n' + 'Type I error is ' +
          str(type_one_error_boot))

    # plot null distribution gaussian
    subplot(2, 3, 5)
    grid(True)
    gca().xaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    gca().yaxis.set_major_locator(
        MaxNLocator(nbins=3))  # reduce number of x-ticks
    hist(null_samples_gaussian, 20, range=hist_range, normed=True)
    axvline(thresh_gaussian, 0, 1, linewidth=2, color='red')
    title('Null Dist. Gaussian\nType I error is ' +
          str(type_one_error_gaussian))

    # pull plots a bit apart
    subplots_adjust(hspace=0.5)
    subplots_adjust(wspace=0.5)