Exemplo n.º 1
0
def compute_dt_matrices(A, B, h, TV=False):
    # variable declaration
    t0 = 0.0  # start time
    T = 1  # end time
    n, m = B.shape

    # Matrix declaration
    x0 = np.random.random(n)
    Csurface = np.random.random((m, n))

    # Declaration of the Dynamical System
    if TV:
        process_ds = SK.FirstOrderLinearDS(x0, A)
    else:
        process_ds = SK.FirstOrderLinearTIDS(x0, A)
    # Model
    process = SK.Model(t0, T)
    process.nonSmoothDynamicalSystem().insertDynamicalSystem(process_ds)
    # time discretisation
    process_time_discretisation = SK.TimeDiscretisation(t0, h)
    # Creation of the Simulation
    process_simu = SK.TimeStepping(process_time_discretisation, 0)
    process_simu.setName("plant simulation")
    # Declaration of the integrator
    process_integrator = SK.ZeroOrderHoldOSI()
    process_integrator.insertDynamicalSystem(process_ds)
    process_simu.insertIntegrator(process_integrator)

    rel = SK.FirstOrderLinearTIR(Csurface, B)
    nslaw = SK.RelayNSL(m)
    inter = SK.Interaction(m, nslaw, rel)

    #process.nonSmoothDynamicalSystem().insertInteraction(inter, True)
    process.nonSmoothDynamicalSystem().link(inter, process_ds)
    process.nonSmoothDynamicalSystem().setControlProperty(inter, True)
    # Initialization
    process.initialize(process_simu)

    # Main loop
    process_simu.computeOneStep()
    Ad = SK.getMatrix(process_integrator.Ad(process_ds)).copy()
    Bd = SK.getMatrix(process_integrator.Bd(process_ds)).copy()

    return (Ad, Bd)
Exemplo n.º 2
0
    def __init__(self, strings, frets, time_range, fs):
        """
        """
        super(Guitar, self).__init__(time_range[0], time_range[1])
        if not isinstance(strings, list):
            strings = [strings]
        if not isinstance(frets, list):
            frets = [frets]
        self.modal_form = strings[0].modal_form
        self.frets = frets
        self.strings = strings
        for string in strings:
            self.nonSmoothDynamicalSystem().insertDynamicalSystem(string)
            # link the interaction(s) and the dynamical system(s)
            for fret in frets:
                self.nonSmoothDynamicalSystem().link(fret, string)

        # -- Simulation --
        # (1) OneStepIntegrators
        theta = 0.5001
        osi = sk.MoreauJeanOSI(theta)
        t0 = time_range[0]
        tend = time_range[1]
        # (2) Time discretisation --
        self.fs = fs  # 1960
        self.time_step = 1. / fs
        t = sk.TimeDiscretisation(t0, self.time_step)
        self.nb_time_steps = (int)((tend - t0) / self.time_step)
        # (3) one step non smooth problem
        osnspb = sk.LCP()
        # (4) Simulation setup with (1) (2) (3)
        self.simu = sk.TimeStepping(t, osi, osnspb)

        # simulation initialization
        self.setSimulation(self.simu)
        self.initialize()
        ndof = strings[0].ndof
        self.fret_position = frets[0].contact_index
        self.data = npw.zeros((self.nb_time_steps + 1, 3 + ndof))
Exemplo n.º 3
0
x0 = [10., 10.]
C = [[1., 0]]  # we have to specify ndmin=2, so it's understood as
K = [.25, .125, 2]

# Declaration of the Dynamical System
doubleIntegrator = sk.FirstOrderLinearTIDS(x0, A)
# Model
process = sk.Model(t0, T)
process.nonSmoothDynamicalSystem().insertDynamicalSystem(doubleIntegrator)
# Declaration of the integrator
OSI = sk.EulerMoreauOSI(theta)
# time discretisation
t = sk.TimeDiscretisation(t0, h)
tSensor = sk.TimeDiscretisation(t0, h)
tActuator = sk.TimeDiscretisation(t0, h)
s = sk.TimeStepping(t, 0)
s.insertIntegrator(OSI)

# Actuator, Sensor & ControlManager
control = ControlManager(s)
sens = LinearSensor(doubleIntegrator, C)
control.addSensorPtr(sens, tSensor)
act = PID(sens)
act.setB(B)
control.addActuatorPtr(act, tActuator)

# Initialization
process.setSimulation(s)
process.initialize()
control.initialize(process)
act.setRef(xFinal)
Exemplo n.º 4
0
    blockModel.nonSmoothDynamicalSystem().link(inter[i], block)

# =======================================
# The Simulation
# =======================================

# (1) OneStepIntegrators
OSI = kernel.Moreau(theta)

# (2) Time discretisation --
t = kernel.TimeDiscretisation(t0, h)

osnspb = kernel.LCP()

# (4) Simulation setup with (1) (2) (3)
s = kernel.TimeStepping(t)
s.insertIntegrator(OSI)
s.insertNonSmoothProblem(osnspb)
blockModel.setSimulation(s)

# simulation initialization
blockModel.initialize()

# the number of time steps
N = (T - t0) / h

# Get the values to be plotted
# ->saved in a matrix dataPlot

dataPlot = np.empty((N + 1, 9))
Exemplo n.º 5
0
# Simulation
#
h = 0.005  # time step
theta = 0.5  # theta scheme

# (1) OneStepIntegrators
OSI = sk.MoreauJeanOSI(theta)

# (2) Time discretisation --
t = sk.TimeDiscretisation(t0, h)

# (3) one step non smooth problem
osnspb = sk.LCP()

# (4) Simulation setup with (1) (2) (3)
s = sk.TimeStepping(bouncingBall, t, OSI, osnspb)
s.setNewtonTolerance(1e-10)
s.setNewtonMaxIteration(10)

# end of model definition

#
# computation
#

# the number of time steps
N = int((T - t0) // h) + 1

# Get the values to be plotted
# ->saved in a matrix dataPlot
dataPlot = np.empty((N + 1, 16))
myNslaw = sk.RelayNSL(2)
myProcessRelation = sk.FirstOrderLinearR(C, B)
myProcessRelation.setComputeEFunction('plugins', 'computeE')
# myProcessRelation.setDPtr(D)

myProcessInteraction = sk.Interaction(myNslaw, myProcessRelation)

# NSDS
simplerelay = sk.NonSmoothDynamicalSystem(t0, T)
simplerelay.insertDynamicalSystem(process)
simplerelay.link(myProcessInteraction, process)

# myProcessRelation.computeJachx(0, x0, x0 , x0, C)

# Simulation
s = sk.TimeStepping(simplerelay, sk.TimeDiscretisation(t0, h),
                    sk.EulerMoreauOSI(theta), sk.Relay())
# s.setComputeResiduY(True)
# s.setComputeResiduR(True)

# matrix to save data
dataPlot = np.empty((N + 1, 7))
k = 0
dataPlot[k, 0] = t0
dataPlot[k, 1:3] = process.x()
dataPlot[k, 3] = myProcessInteraction.lambda_(0)[0]
dataPlot[k, 4] = myProcessInteraction.lambda_(0)[1]
dataPlot[k, 5] = myProcessInteraction.y(0)[0]
dataPlot[k, 6] = myProcessInteraction.y(0)[1]
# time loop
k = 1
print('start computation')
Exemplo n.º 7
0
C[0, 0] = C[1, 1] = -1.

particle_relation = sk.FirstOrderLinearR(C, B)

nslaw = sk.RelayNSL(ninter)

particle_interaction = sk.Interaction(nslaw, particle_relation)

# -- The Model --
filippov = sk.NonSmoothDynamicalSystem(t0, T)
filippov.insertDynamicalSystem(particle)
filippov.link(particle_interaction, particle)

# -- Simulation --
td = sk.TimeDiscretisation(t0, h)
simu = sk.TimeStepping(filippov, td)
# osi
theta = 0.5
myIntegrator = sk.EulerMoreauOSI(theta)
simu.insertIntegrator(myIntegrator)

# osns
osnspb = sk.Relay(sn.SICONOS_RELAY_LEMKE)
simu.insertNonSmoothProblem(osnspb)

# -- Get the values to be plotted --
output_size = 1 + ndof + 2 * ninter
nb_time_steps = int((T - t0) / h) + 1
data_plot = np.empty((nb_time_steps, output_size))
data_plot[0, 0] = filippov.t0()
data_plot[0, 1:4] = particle.x()
Exemplo n.º 8
0
def test_bouncing_ball2():
    """Run a complete simulation (Bouncing ball example)
    LagrangianLinearTIDS,  plugged Fext.
    """

    t0 = 0       # start time
    T = 5        # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = np.zeros(3, dtype=np.float64)
    x[0] = 1.
    v = np.zeros_like(x)
    # mass matrix
    mass = np.eye(3, dtype=np.float64)
    mass[2, 2] = 3. / 5 * r * r

    # the dynamical system
    ball = sk.LagrangianLinearTIDS(x, v, mass)
    weight = np.zeros(ball.dimension())
    weight[0] = -m * g
    ball.setFExtPtr(weight)

    # a ball with its own computeFExt
    class Ball(sk.LagrangianLinearTIDS):

        def computeFExt(self, t):
            """External forces operator computation
            """
            print("computing FExt at t=", t)
            #self._fExt[0] = -m * g
            weight = np.zeros(self.dimension())
            weight[0] = -m * g
            self.setFExtPtr(weight)

    ball_d = Ball(x.copy(), v.copy(), mass)
    ball_d.computeFExt(t0)
    # Interactions
    #

    # ball-floor
    H = np.zeros((1, 3), dtype=np.float64)
    H[0, 0] = 1.

    nslaw = sk.NewtonImpactNSL(e)
    nslaw_d = sk.NewtonImpactNSL(e)

    relation = sk.LagrangianLinearTIR(H)
    relation_d = sk.LagrangianLinearTIR(H)

    inter = sk.Interaction(nslaw, relation)
    inter_d = sk.Interaction(nslaw_d, relation_d)

    #
    # NSDS
    #
    bouncing_ball = sk.NonSmoothDynamicalSystem(t0, T)

    bouncing_ball_d = sk.NonSmoothDynamicalSystem(t0, T)

    # add the dynamical system to the non smooth dynamical system
    bouncing_ball.insertDynamicalSystem(ball)
    bouncing_ball_d.insertDynamicalSystem(ball_d)

    # link the interaction and the dynamical system
    bouncing_ball.link(inter, ball)
    bouncing_ball_d.link(inter_d, ball_d)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = sk.MoreauJeanOSI(theta)

    OSI_d = sk.MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = sk.TimeDiscretisation(t0, h)
    t_d = sk.TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = sk.LCP()

    osnspb_d = sk.LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = sk.TimeStepping(bouncing_ball,t, OSI, osnspb)

    s_d = sk.TimeStepping(bouncing_ball_d,t_d, OSI_d, osnspb_d)

    # end of model definition

    #
    # computation
    #

    # the number of time steps
    nb_time_steps = int((T - t0) / h + 1)

    # Get the values to be plotted
    # ->saved in a matrix data

    s_d.computeOneStep()

    data = np.empty((nb_time_steps + 1, 5))
    data_d = np.empty((nb_time_steps + 1, 5))

    data[0, 0] = t0
    data[0, 1] = ball.q()[0]
    data[0, 2] = ball.velocity()[0]
    data[0, 3] = ball.p(1)[0]
    data[0, 4] = inter.lambda_(1)

    data_d[0, 0] = t0
    data_d[0, 1] = ball_d.q()[0]
    data_d[0, 2] = ball_d.velocity()[0]
    data_d[0, 3] = ball_d.p(1)[0]
    data_d[0, 4] = inter_d.lambda_(1)

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()
        s_d.computeOneStep()

        data[k, 0] = s.nextTime()
        data[k, 1] = ball.q()[0]
        data[k, 2] = ball.velocity()[0]
        data[k, 3] = ball.p(1)[0]
        data[k, 4] = inter.lambda_(1)[0]

        data_d[k, 0] = s_d.nextTime()
        data_d[k, 1] = ball_d.q()[0]
        data_d[k, 2] = ball_d.velocity()[0]
        data_d[k, 3] = ball_d.p(1)[0]
        data_d[k, 4] = inter_d.lambda_(1)[0]
    
        assert np.allclose(data[k, 1], data_d[k, 1])

        #print(s.nextTime())
        k += 1
        s.nextStep()
        s_d.nextStep()
Exemplo n.º 9
0
#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
aOSI = sk.EulerMoreauOSI(theta)
# (2) Time discretisation
aTiDisc = sk.TimeDiscretisation(t0, h_step)

# (3) Non smooth problem
aLCP = sk.LCP()

# (4) Simulation setup with (1) (2) (3)
aTS = sk.TimeStepping(DiodeBridge, aTiDisc, aOSI, aLCP)

# end of model definition

#
# computation
#

k = 0
h = aTS.timeStep()
print("Timestep : ", h)
# Number of time steps
N = int((T - t0) / h)
print("Number of steps : ", N)

# Get the values to be plotted
Exemplo n.º 10
0
def run_simulation_with_two_ds(ball, ball_d, t0):

    T = 5  # end time
    h = 0.005  # time step

    e = 0.9  # restitution coeficient
    theta = 0.5  # theta scheme

    # ball-floor
    H = np.zeros((1, 3), dtype=np.float64)
    H[0, 0] = 1.

    nslaw = sk.NewtonImpactNSL(e)
    nslaw_d = sk.NewtonImpactNSL(e)

    relation = sk.LagrangianLinearTIR(H)
    relation_d = sk.LagrangianLinearTIR(H)

    inter = sk.Interaction(nslaw, relation)
    inter_d = sk.Interaction(nslaw_d, relation_d)

    #
    # NSDS
    #
    bouncing_ball = sk.NonSmoothDynamicalSystem(t0, T)

    bouncing_ball_d = sk.NonSmoothDynamicalSystem(t0, T)

    # add the dynamical system to the non smooth dynamical system
    bouncing_ball.insertDynamicalSystem(ball)
    bouncing_ball_d.insertDynamicalSystem(ball_d)

    # link the interaction and the dynamical system
    bouncing_ball.link(inter, ball)
    bouncing_ball_d.link(inter_d, ball_d)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = sk.MoreauJeanOSI(theta)

    OSI_d = sk.MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = sk.TimeDiscretisation(t0, h)
    t_d = sk.TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = sk.LCP()

    osnspb_d = sk.LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = sk.TimeStepping(bouncing_ball, t, OSI, osnspb)

    s_d = sk.TimeStepping(bouncing_ball_d, t_d, OSI_d, osnspb_d)

    # end of model definition

    #
    # computation
    #

    # the number of time steps
    nb_time_steps = int((T - t0) / h + 1)

    # Get the values to be plotted
    # ->saved in a matrix data

    s_d.computeOneStep()

    data = np.empty((nb_time_steps + 1, 5))
    data_d = np.empty((nb_time_steps + 1, 5))

    data[0, 0] = t0
    data[0, 1] = ball.q()[0]
    data[0, 2] = ball.velocity()[0]
    data[0, 3] = ball.p(1)[0]
    data[0, 4] = inter.lambda_(1)

    data_d[0, 0] = t0
    data_d[0, 1] = ball_d.q()[0]
    data_d[0, 2] = ball_d.velocity()[0]
    data_d[0, 3] = ball_d.p(1)[0]
    data_d[0, 4] = inter_d.lambda_(1)

    k = 1

    # time loop
    while (s.hasNextEvent()):
        s.computeOneStep()
        s_d.computeOneStep()

        data[k, 0] = s.nextTime()
        data[k, 1] = ball.q()[0]
        data[k, 2] = ball.velocity()[0]
        data[k, 3] = ball.p(1)[0]
        data[k, 4] = inter.lambda_(1)[0]

        data_d[k, 0] = s_d.nextTime()
        data_d[k, 1] = ball_d.q()[0]
        data_d[k, 2] = ball_d.velocity()[0]
        data_d[k, 3] = ball_d.p(1)[0]
        data_d[k, 4] = inter_d.lambda_(1)[0]

        assert np.allclose(data[k, 1], data_d[k, 1])

        #print(s.nextTime())
        k += 1
        s.nextStep()
        s_d.nextStep()

    data.resize(k, 5)
    view = False
    if view:
        import matplotlib.pyplot as plt

        fig_size = [14, 14]
        plt.rcParams["figure.figsize"] = fig_size

        plt.subplot(411)
        plt.title('displacement')
        plt.plot(data[:, 0], data[:, 1])
        plt.grid()
        plt.subplot(412)
        plt.title('velocity')
        plt.plot(data[:, 0], data[:, 2])
        plt.grid()
        plt.subplot(413)
        plt.plot(data[:, 0], data[:, 3])
        plt.title('reaction')
        plt.grid()
        plt.subplot(414)
        plt.plot(data[:, 0], data[:, 4])
        plt.title('lambda')
        plt.grid()
        plt.show()
Exemplo n.º 11
0
Arquivo: PID.py Projeto: foerg/siconos
x0 = [10., 10.]
C = [[1., 0]]  # we have to specify ndmin=2, so it's understood as
K = [.25, .125, 2]

# Declaration of the Dynamical System
doubleIntegrator = sk.FirstOrderLinearTIDS(x0, A)
# Model
process = sk.NonSmoothDynamicalSystem(t0, T)
process.insertDynamicalSystem(doubleIntegrator)
# Declaration of the integrator
OSI = sk.EulerMoreauOSI(theta)
# time discretisation
t = sk.TimeDiscretisation(t0, h)
tSensor = sk.TimeDiscretisation(t0, h)
tActuator = sk.TimeDiscretisation(t0, h)
s = sk.TimeStepping(process, t, 0)
s.insertIntegrator(OSI)

# Actuator, Sensor & ControlManager
control = ControlManager(s)
sens = LinearSensor(doubleIntegrator, C)
control.addSensorPtr(sens, tSensor)
act = PID(sens)
act.setB(B)
control.addActuatorPtr(act, tActuator)

# Initialization
control.initialize(process)
act.setRef(xFinal)
act.setK(K)
act.setDeltaT(h)
Exemplo n.º 12
0
particle_relation = sk.FirstOrderLinearR(C, B)

nslaw = sk.RelayNSL(ninter)

particle_interaction = sk.Interaction(nslaw, particle_relation)

# -- The Model --
filippov = sk.Model(t0, T)
nsds = filippov.nonSmoothDynamicalSystem()
nsds.insertDynamicalSystem(particle)
nsds.link(particle_interaction, particle)

# -- Simulation --
td = sk.TimeDiscretisation(t0, h)
simu = sk.TimeStepping(td)
# osi
theta = 0.5
myIntegrator = sk.EulerMoreauOSI(theta)
simu.insertIntegrator(myIntegrator)

# osns
osnspb = sk.Relay(sn.SICONOS_RELAY_LEMKE)
simu.insertNonSmoothProblem(osnspb)

filippov.setSimulation(simu)
filippov.initialize()

# -- Get the values to be plotted --
output_size = 1 + ndof + 2 * ninter
nb_time_steps = int((T - t0) / h) + 1
Exemplo n.º 13
0
    def __init__(self,
                 strings_and_frets,
                 time_range,
                 fs,
                 output_freq=1,
                 interactions_output=0,
                 integrators=None,
                 default_integrator=None):
        """
        Parameters
        ----------
        strings_and_frets : python dictionnary
            keys = interactions (Fret). See notes below.
            values = dynamical systems (StringDS)
        time_range : list
            time range for the simulation.
        fs : double
            sampling frequency
        integrators : dictionnary, optional
            integrators[some_ds] = osi class name
            (MoreauJeanOSI or MoreauJeanBilbaoOSI).
            Default: Bilbao for all ds.
        default_integrator: sk.OneStepIntegrator
            default osi type (if integrators is not set
            or for ds not present in integrators).
            Default = Bilbao.
        output_freq: int, optional
            output frequency for times steps
        interactions_output: int, optional
            0: save nothing, 1: only y, 2: y + lambda(vel) 3: y + ydot + lambda
            default = 0
        Notes
        -----
        * strings_and_frets.keys() : interactions
        * strings_and_frets.values() : dynamical systems
        * so, strings_and_frets[some_interaction] returns the ds
        linked to some_interaction.
        * For integrators:
          - to use Bilbao for all ds : do not set
            integrators and default_integrator params
          - to choose the integrator: set default_integrator=OSI
            OSI being some siconos OneStepIntegrator class.
          - to explicitely set the integrator for each ds:
            set integrators dictionnary, with
            integrators[some_ds] = OSI (OneStepIntegrator class)
            all ds not set in integrators will be integrated
            with default_integrator.
        """
        # iterate through ds and interactions in the input dictionnary
        # - insert ds into the nonsmooth dynamical system
        # - link each ds to its interaction
        self.nsds = sk.NonSmoothDynamicalSystem(time_range[0], time_range[1])
        if None in strings_and_frets:
            # No interactions in the model
            ds = strings_and_frets[None]
            assert isinstance(ds, StringDS)
            self.nsds.insertDynamicalSystem(ds)
        else:
            #self.nsds.insertDynamicalSystem(list(strings_and_frets.values())[0])
            for interaction in strings_and_frets:
                ds = strings_and_frets[interaction]
                assert isinstance(interaction, Fret)
                assert isinstance(ds, StringDS)
                self.nsds.insertDynamicalSystem(ds)
                # link the interaction and the dynamical system
                self.nsds.link(interaction, ds)
        self.strings_and_frets = strings_and_frets
        # -- Simulation --
        moreau_bilbao = sk.MoreauJeanBilbaoOSI()
        moreau_jean = sk.MoreauJeanOSI(0.500001)
        default_integrator = moreau_bilbao
        if default_integrator == 'MoreauJean':
            default_integrator = moreau_jean

        # (2) Time discretisation --
        t0 = time_range[0]
        tend = time_range[1]
        self.fs = fs
        self.time_step = 1. / fs
        t = sk.TimeDiscretisation(t0, self.time_step)
        self.nb_time_steps = (int)((tend - t0) * fs)
        self.output_freq = output_freq
        self.nb_time_steps_output = (int)(self.nb_time_steps / output_freq)
        # (3) one step non smooth problem
        self.osnspb = sk.LCP()
        # (4) Simulation setup with (1) (2) (3)
        self.default_integrator = default_integrator
        self.simulation = sk.TimeStepping(self.nsds, t, default_integrator,
                                          self.osnspb)
        #self.simulation = sk.TimeStepping(self.nsds, t, moreau_bilbao, self.osnspb)
        if integrators is not None:
            for ds in integrators:
                self.simulation.associate(integrators[ds], ds)

        # internal buffers, used to save data for each time step.
        # A dict of buffers to save ds variables for all time steps
        self.data_ds = {}
        for ds in self.strings_and_frets.values():
            ndof = ds.dimension()
            self.data_ds[ds] = npw.zeros((ndof, self.nb_time_steps_output + 1))
        if None in self.strings_and_frets:
            self.strings_and_frets = {}

        # A dict of buffers to save interactions variables for all time steps
        self.data_interactions = {}
        self.save_interactions = interactions_output > 0
        self.interactions_output = interactions_output
        if self.save_interactions:
            for interaction in self.strings_and_frets:
                self.data_interactions[interaction] = []
                for i in range(interactions_output):
                    self.data_interactions[interaction].append(
                        npw.zeros(self.nb_time_steps_output + 1))
        # time instants
        self.time = npw.zeros(self.nb_time_steps_output + 1)

        # saved data state (modal or nodal)
        self.modal_values = True
Exemplo n.º 14
0
    def __init__(self,
                 strings_and_frets,
                 time_range,
                 fs,
                 integrators=None,
                 default_integrator=None):
        """
        Parameters
        ----------
        strings_and_frets : python dictionnary
            keys = interactions (Fret). See notes below.
            values = dynamical systems (StringDS)
        time_range : list
            time range for the simulation.
        fs : double
            sampling frequency
        integrators : dictionnary, optional
            integrators[some_ds] = osi class name
            (MoreauJeanOSI or MoreauJeanBilbaoOSI).
            Default: Bilbao for all ds.
        default_integrator: sk.OneStepIntegrator
            default osi type (if integrators is not set
            or for ds not present in integrators).
            Default = Bilbao.

        Notes
        -----
        * strings_and_frets.keys() : interactions
        * strings_and_frets.values() : dynamical systems
        * so, strings_and_frets[some_interaction] returns the ds
        linked to some_interaction.
        * For integrators:
          - to use Bilbao for all ds : do not set
            integrators and default_integrator params
          - to choose the integrator: set default_integrator=OSI
            OSI being some siconos OneStepIntegrator class.
          - to explicitely set the integrator for each ds:
            set integrators dictionnary, with
            integrators[some_ds] = OSI (OneStepIntegrator class)
            all ds not set in integrators will be integrated
            with default_integrator.
        """
        # Build siconos model object (input = time range)
        super(Guitar, self).__init__(time_range[0], time_range[1])
        # iterate through ds and interactions in the input dictionnary
        # - insert ds into the nonsmooth dynamical system
        # - link each ds to its interaction
        for interaction in strings_and_frets:
            ds = strings_and_frets[interaction]
            assert isinstance(interaction, Fret)
            assert isinstance(ds, StringDS)
            self.insertDynamicalSystem(ds)
            # link the interaction and the dynamical system
            self.link(interaction, ds)
        self.strings_and_frets = strings_and_frets
        # -- Simulation --
        moreau_bilbao = sk.MoreauJeanBilbaoOSI()
        moreau_jean = sk.MoreauJeanOSI(0.500001)
        default_integrator = moreau_bilbao
        if default_integrator is 'MoreauJean':
            default_integrator = moreau_jean

        # (2) Time discretisation --
        t0 = time_range[0]
        tend = time_range[1]
        self.fs = fs
        self.time_step = 1. / fs
        t = sk.TimeDiscretisation(t0, self.time_step)
        self.nb_time_steps = (int)((tend - t0) / self.time_step) + 1
        # (3) one step non smooth problem
        osnspb = sk.LCP()
        # (4) Simulation setup with (1) (2) (3)
        self.simu = sk.TimeStepping(self, t, default_integrator, osnspb)
        if integrators is not None:
            for ds in integrators:
                self.simu.associate(integrators[ds], ds)

        # internal buffers, used to save data for each time step.
        # A dict of buffers to save ds variables for all time steps
        self.data_ds = {}
        for ds in self.strings_and_frets.values():
            ndof = ds.dimension()
            self.data_ds[ds] = npw.zeros((self.nb_time_steps + 1, ndof))
        # A dict of buffers to save interactions variables for all time steps
        self.data_interactions = {}
        for interaction in self.strings_and_frets:
            nbc = interaction.getSizeOfY()
            self.data_interactions[interaction] = \
                npw.zeros((self.nb_time_steps + 1, 3 * nbc))
        # time instants
        self.time = npw.zeros(self.nb_time_steps + 1)
Exemplo n.º 15
0
def test_bouncing_ball2():

    import siconos.kernel as K
    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 5        # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = K.LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    # a ball with its own computeFExt
    class Ball(K.LagrangianLinearTIDS):
        def computeFExt(self, t):
            #print("computing FExt at t=", t)
            weight = array([-m * g, 0, 0])
            self.setFExtPtr(weight)

    ball_d = Ball(array([1, 0, 0]), array([0, 0, 0]), mass)

    ball_d.setFExtPtr(array([0, 0, 0]))

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = K.NewtonImpactNSL(e)
    nslaw_d = K.NewtonImpactNSL(e)

    relation = K.LagrangianLinearTIR(H)
    relation_d = K.LagrangianLinearTIR(H)

    inter = K.Interaction(1, nslaw, relation)
    inter_d = K.Interaction(1, nslaw_d, relation_d)

    #
    # Model
    #
    bouncingBall = K.Model(t0, T)

    bouncingBall_d = K.Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)
    bouncingBall_d.nonSmoothDynamicalSystem().insertDynamicalSystem(ball_d)

    # link the interaction and the dynamical system
    bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)
    bouncingBall_d.nonSmoothDynamicalSystem().link(inter_d, ball_d)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = K.MoreauJeanOSI(theta)
    OSI.insertDynamicalSystem(ball)

    OSI_d = K.MoreauJeanOSI(theta)
    OSI_d.insertDynamicalSystem(ball_d)

    # (2) Time discretisation --
    t = K.TimeDiscretisation(t0, h)
    t_d = K.TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = K.LCP()

    osnspb_d = K.LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = K.TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    s_d = K.TimeStepping(t_d)
    s_d.insertIntegrator(OSI_d)
    s_d.insertNonSmoothProblem(osnspb_d)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    bouncingBall.initialize(s)

    bouncingBall_d.initialize(s_d)

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    s_d.computeOneStep()

    dataPlot = empty((N+1, 5))
    dataPlot_d = empty((N+1, 5))

    dataPlot[0, 0] = t0
    dataPlot[0, 1] = ball.q()[0]
    dataPlot[0, 2] = ball.velocity()[0]
    dataPlot[0, 3] = ball.p(1)[0]
    dataPlot[0, 4] = inter.lambda_(1)

    dataPlot_d[0, 0] = t0
    dataPlot_d[0, 1] = ball_d.q()[0]
    dataPlot_d[0, 2] = ball_d.velocity()[0]
    dataPlot_d[0, 3] = ball_d.p(1)[0]
    dataPlot_d[0, 4] = inter_d.lambda_(1)

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()
        s_d.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = ball.q()[0]
        dataPlot[k, 2] = ball.velocity()[0]
        dataPlot[k, 3] = ball.p(1)[0]
        dataPlot[k, 4] = inter.lambda_(1)[0]

        dataPlot_d[k, 0] = s_d.nextTime()
        dataPlot_d[k, 1] = ball_d.q()[0]
        dataPlot_d[k, 2] = ball_d.velocity()[0]
        dataPlot_d[k, 3] = ball_d.p(1)[0]
        dataPlot_d[k, 4] = inter_d.lambda_(1)[0]

        assert dataPlot[k, 1] == dataPlot_d[k, 1]

        #print(s.nextTime())
        k += 1
        s.nextStep()
        s_d.nextStep()
Exemplo n.º 16
0
#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
aOSI = sk.EulerMoreauOSI(theta)
# (2) Time discretisation
aTiDisc = sk.TimeDiscretisation(t0, h_step)

# (3) Non smooth problem
aLCP = sk.LCP()

# (4) Simulation setup with (1) (2) (3)
aTS = sk.TimeStepping(aTiDisc, aOSI, aLCP)

# end of model definition

#
# computation
#

# simulation initialization
DiodeBridge.setSimulation(aTS)
DiodeBridge.initialize()

k = 0
h = aTS.timeStep()
print("Timestep : ", h)
# Number of time steps
Exemplo n.º 17
0
def test_lagrangian_and_osis():
    """Tests osi/lagrangian combinations
    """
    # --- The dynamical systems ---
    # dimension
    ndof = 3
    # initial conditons
    q0 = np.zeros(ndof, dtype=np.float64)
    v0 = np.zeros_like(q0)
    q0[0] = 1.
    # mass, stiffness and damping matrices
    # (diagonal values only)
    mass_diag = np.ones(ndof, dtype=np.float64)
    k_diag = np.zeros_like(mass_diag)
    c_diag = np.zeros_like(mass_diag)
    sigma = 0.2
    omega2 = 1.2
    k_diag[...] = omega2
    c_diag[...] = sigma

    ds_list = {}
    # - LagrangianLinearTIDS -
    ds_list['LTIDS+MJ'] = sk.LagrangianLinearTIDS(q0, v0, np.diag(mass_diag),
                                                  np.diag(k_diag),
                                                  np.diag(c_diag))
    # - LagrangianLinearDiagonalDS -
    ds_list['LLDDS+MJ'] = sk.LagrangianLinearDiagonalDS(
        q0, v0, k_diag, c_diag, mass_diag)
    ds_list['LLDDS+MJB'] = sk.LagrangianLinearDiagonalDS(
        q0, v0, k_diag, c_diag, mass_diag)
    # no mass (i.e. implicitely equal to Id)
    ds_list['LLDDS+MJB2'] = sk.LagrangianLinearDiagonalDS(
        q0, v0, k_diag, c_diag)

    nb_ds = len(ds_list)
    for ds in ds_list.values():
        ds.computeForces(0., q0, v0)

    assert np.allclose(ds_list['LTIDS+MJ'].forces(),
                       ds_list['LTIDS+MJ'].forces())

    # --- Interactions ---
    cor = 0.9

    nslaw = sk.NewtonImpactNSL(cor)
    hmat = np.zeros((1, ndof), dtype=np.float64)
    hmat[0, 0] = 1.
    relation = sk.LagrangianLinearTIR(hmat)

    interactions = []
    for k in range(nb_ds):
        interactions.append(sk.Interaction(nslaw, relation))

    # --- NSDS ---
    tinit = 0.
    tend = 3.
    nsds = sk.NonSmoothDynamicalSystem(tinit, tend)

    # - insert ds into the model and link them with their interaction -
    ninter = 0
    for ds in ds_list.values():
        nsds.insertDynamicalSystem(ds)
        nsds.link(interactions[ninter], ds)
        ninter += 1

    # --- Simulation ---

    # - (1) OneStepIntegrators --
    theta = 0.5000001
    standard = sk.MoreauJeanOSI(theta)
    bilbao = sk.MoreauJeanBilbaoOSI()
    #-- (2) Time discretisation --
    time_step = 1e-4
    td = sk.TimeDiscretisation(tinit, time_step)
    # -- (3) one step non smooth problem
    lcp = sk.LCP()
    # -- (4) Simulation setup with (1) (2) (3)
    simu = sk.TimeStepping(nsds, td, standard, lcp)

    # extra osi must be explicitely inserted into simu and linked to ds
    simu.associate(standard, ds_list['LTIDS+MJ'])
    simu.associate(standard, ds_list['LLDDS+MJ'])

    simu.associate(bilbao, ds_list['LLDDS+MJB'])
    simu.associate(bilbao, ds_list['LLDDS+MJB2'])

    positions = []
    velocities = []
    for ds in ds_list.values():
        positions.append(ds.q())
        velocities.append(ds.velocity())

    # number of time steps and buffer used to save results
    nb_steps = int((tend - tinit) / time_step) + 1
    data = np.zeros((nb_steps, 1 + 2 * len(ds_list)), dtype=np.float64)
    data[0, 0] = tinit

    for k in range(nb_ds):
        data[0, k * 2 + 1] = positions[k][0]
        data[0, k * 2 + 2] = velocities[k][0]

    current_iter = 1
    # --- Time loop ---
    while simu.hasNextEvent():
        simu.computeOneStep()
        data[current_iter, 0] = simu.nextTime()
        for k in range(nb_ds):
            data[current_iter, k * 2 + 1] = positions[k][0]
            data[current_iter, k * 2 + 2] = velocities[k][0]
        simu.nextStep()
        current_iter += 1

    # -- check results
    ref_pos = data[:, 1]
    ref_vel = data[:, 2]
    for k in range(1, nb_ds):
        assert np.allclose(ref_pos, data[:, k * 2 + 1], atol=time_step)
        assert np.allclose(ref_vel, data[:, k * 2 + 2], atol=time_step)
Exemplo n.º 18
0
#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.500000001
aOSI = sk.EulerMoreauOSI(theta)

# (2) Time discretisation
aTiDisc = sk.TimeDiscretisation(t0, h_step)

# (3) Non smooth problem
aLCP = sk.LCP()

# (4) Simulation setup with (1) (2) (3)
aTS = sk.TimeStepping(CircuitRLCD, aTiDisc, aOSI, aLCP)

# end of model definition

#
# computation
#

k = 0
h = aTS.timeStep()
print("Timestep : ", h)
# Number of time steps
N = int((T - t0) / h)
print("Number of steps : ", N)

# Get the values to be plotted
Exemplo n.º 19
0
def test_bouncing_ball1():
    """Run a complete simulation (Bouncing ball example)
    LagrangianLinearTIDS,  no plugins.
    """

    t0 = 0.      # start time
    tend = 10.   # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = np.zeros(3, dtype=np.float64)
    x[0] = 1.
    v = np.zeros_like(x)
    # mass matrix
    mass = np.eye(3, dtype=np.float64)
    mass[2, 2] = 3. / 5 * r * r

    # the dynamical system
    ball = sk.LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = np.zeros_like(x)
    weight[0] = -m * g
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = np.zeros((1, 3), dtype=np.float64)
    H[0, 0] = 1.

    nslaw = sk.NewtonImpactNSL(e)
    relation = sk.LagrangianLinearTIR(H)
    inter = sk.Interaction(nslaw, relation)

    #
    # NSDS
    #
    bouncing_ball = sk.NonSmoothDynamicalSystem(t0, tend)

    # add the dynamical system to the non smooth dynamical system
    bouncing_ball.insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    bouncing_ball.link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = sk.MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = sk.TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = sk.LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = sk.TimeStepping(bouncing_ball,t, OSI, osnspb)

    # end of model definition

    #
    # computation
    #
    
    #
    # save and load data from xml and .dat
    #
    try:
        from siconos.io import save
        save(bouncing_ball, "bouncingBall.xml")
        save(bouncing_ball, "bouncingBall.bin")

    except:
        print("Warning : could not import save from siconos.io")

    # the number of time steps
    nb_time_steps = int((tend - t0) / h + 1)

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    data = np.empty((nb_time_steps, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    data[0, 0] = t0
    data[0, 1] = q[0]
    data[0, 2] = v[0]
    data[0, 3] = p[0]
    data[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        data[k, 0] = s.nextTime()
        data[k, 1] = q[0]
        data[k, 2] = v[0]
        data[k, 3] = p[0]
        data[k, 4] = lambda_[0]

        k += 1
        #print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #

    ref = sk.getMatrix(sk.SimpleMatrix(
        os.path.join(working_dir, "data/result.ref")))
    assert (np.linalg.norm(data - ref) < 1e-12)
Exemplo n.º 20
0
relation = sk.FirstOrderLinearTIR(N, B)
relation.setDPtr(M)

nslaw = sk.ComplementarityConditionNSL(ninter)

interaction = sk.Interaction(nslaw, relation)

# -- The Model --
circuit = sk.NonSmoothDynamicalSystem(t0, T)
circuit.setTitle('train')
circuit.insertDynamicalSystem(RC)
circuit.link(interaction, RC)

# -- Simulation --
td = sk.TimeDiscretisation(t0, tau)
simu = sk.TimeStepping(circuit, td)
# osi
theta = 0.50000000000001
osi = sk.EulerMoreauOSI(theta)
simu.insertIntegrator(osi)

# osns
osnspb = sk.LCP()
simu.insertNonSmoothProblem(osnspb)

# -- Get the values to be plotted --
output_size = 2 * number_of_cars + 1
nb_time_steps = int((T - t0) / tau) + 1
data_plot = np.empty((nb_time_steps, output_size))
data_plot[0, 0] = circuit.t0() / tscale
data_plot[0, 1:] = RC.x()