Exemplo n.º 1
0
A = zeros((ndof, ndof))
x0 = [Xinit, -Xinit]
sensorC = eye(ndof)
Csurface = [[0, 1.0]]

# Simple check
if h > hControl:
    print "hControl must be bigger than h"
    exit(1)

# Declaration of the Dynamical System
processDS = FirstOrderLinearDS(x0, A)
processDS.setComputebFunction("RelayPlugin", "computeB")
# Model
process = Model(t0, T)
process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS)
# time discretisation
processTD = TimeDiscretisation(t0, h)
tSensor = TimeDiscretisation(t0, hControl)
tActuator = TimeDiscretisation(t0, hControl)
# Creation of the Simulation
processSimulation = TimeStepping(processTD, 0)
processSimulation.setName("plant simulation")
# Declaration of the integrator
processIntegrator = ZeroOrderHoldOSI(processDS)
processSimulation.insertIntegrator(processIntegrator)
# Actuator, Sensor & ControlManager
control = ControlManager(process)
sens = LinearSensor(tSensor, processDS, sensorC)
control.addSensorPtr(sens)
act = LinearSMCOT2(tActuator, processDS)
Exemplo n.º 2
0
def test_serialization4():
    from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \
        LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping

    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 10       # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = NewtonImpactNSL(e)
    relation = LagrangianLinearTIR(H)
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    first_bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    first_bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    first_bouncingBall.setSimulation(s)
    first_bouncingBall.initialize()

    #
    # save and load data from xml and .dat
    #
    from siconos.io.io_base import save, load
    save(first_bouncingBall, "bouncingBall.xml")

    bouncingBall = load("bouncingBall.xml")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = q[0]
    dataPlot[0, 2] = v[0]
    dataPlot[0, 3] = p[0]
    dataPlot[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = q[0]
        dataPlot[k, 2] = v[0]
        dataPlot[k, 3] = p[0]
        dataPlot[k, 4] = lambda_[0]

        k += 1
        print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,
                                              "data/result.ref")))

    assert (norm(dataPlot - ref) < 1e-12)
Exemplo n.º 3
0
def test_bouncing_ball1():

    from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL, \
        LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI, TimeDiscretisation, LCP, TimeStepping

    from numpy import array, eye, empty

    t0 = 0       # start time
    T = 10       # end time
    h = 0.005    # time step
    r = 0.1      # ball radius
    g = 9.81     # gravity
    m = 1        # ball mass
    e = 0.9      # restitution coeficient
    theta = 0.5  # theta scheme

    #
    # dynamical system
    #
    x = array([1, 0, 0])  # initial position
    v = array([0, 0, 0])  # initial velocity
    mass = eye(3)         # mass matrix
    mass[2, 2] = 3./5 * r * r

    # the dynamical system
    ball = LagrangianLinearTIDS(x, v, mass)

    # set external forces
    weight = array([-m * g, 0, 0])
    ball.setFExtPtr(weight)

    #
    # Interactions
    #

    # ball-floor
    H = array([[1, 0, 0]])

    nslaw = NewtonImpactNSL(e)
    relation = LagrangianLinearTIR(H)
    inter = Interaction(1, nslaw, relation)

    #
    # Model
    #
    bouncingBall = Model(t0, T)

    # add the dynamical system to the non smooth dynamical system
    bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

    # link the interaction and the dynamical system
    bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    OSI = MoreauJeanOSI(theta)
    OSI.insertDynamicalSystem(ball)

    # (2) Time discretisation --
    t = TimeDiscretisation(t0, h)

    # (3) one step non smooth problem
    osnspb = LCP()

    # (4) Simulation setup with (1) (2) (3)
    s = TimeStepping(t)
    s.insertIntegrator(OSI)
    s.insertNonSmoothProblem(osnspb)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    bouncingBall.initialize(s)

    #
    # save and load data from xml and .dat
    #
    try:
        from siconos.io import save
        save(bouncingBall, "bouncingBall.xml")
        save(bouncingBall, "bouncingBall.bin")

    except:
        print("Warning : could not import save from siconos.io")

    # the number of time steps
    N = (T-t0)/h+1

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty((N, 5))

    #
    # numpy pointers on dense Siconos vectors
    #
    q = ball.q()
    v = ball.velocity()
    p = ball.p(1)
    lambda_ = inter.lambda_(1)

    #
    # initial data
    #
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = q[0]
    dataPlot[0, 2] = v[0]
    dataPlot[0, 3] = p[0]
    dataPlot[0, 4] = lambda_[0]

    k = 1

    # time loop
    while(s.hasNextEvent()):
        s.computeOneStep()

        dataPlot[k, 0] = s.nextTime()
        dataPlot[k, 1] = q[0]
        dataPlot[k, 2] = v[0]
        dataPlot[k, 3] = p[0]
        dataPlot[k, 4] = lambda_[0]

        k += 1
        #print(s.nextTime())
        s.nextStep()

    #
    # comparison with the reference file
    #
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    ref = getMatrix(SimpleMatrix(os.path.join(working_dir, "data/result.ref")))

    assert (norm(dataPlot - ref) < 1e-12)

# Initial box body
body = makeBox()

# set external forces
weight = [0, 0, -body.scalarMass() * g]
body.setFExtPtr(weight)

#
# Model
#
bouncingBox = Model(t0, T)

# add the dynamical system to the non smooth dynamical system
bouncingBox.nonSmoothDynamicalSystem().insertDynamicalSystem(body)

#
# Simulation
#

# (1) OneStepIntegrators
osi = MoreauJeanOSI(theta)

ground = SiconosPlane()
groundOffset = [0, 0, -0.5, 1, 0, 0, 0]

# (2) Time discretisation --
timedisc = TimeDiscretisation(t0, h)

# (3) one step non smooth problem
Exemplo n.º 5
0
B = [[ -1./Cvalue], [0.]]

LTIRCircuitRLCD = FirstOrderLinearTIR(C, B)
LTIRCircuitRLCD.setDPtr(D)

nslaw = ComplementarityConditionNSL(1)
InterCircuitRLCD = Interaction(1, nslaw, LTIRCircuitRLCD, 1)


#
# Model
#
CircuitRLCD = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
CircuitRLCD.nonSmoothDynamicalSystem().insertDynamicalSystem(LSCircuitRLCD)

#   link the interaction and the dynamical system
CircuitRLCD.nonSmoothDynamicalSystem().link(InterCircuitRLCD, LSCircuitRLCD)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
aOSI = EulerMoreauOSI(theta)
aOSI.insertDynamicalSystem(LSCircuitRLCD)

# (2) Time discretisation
aTiDisc = TimeDiscretisation(t0, h_step)
     [0.,        0.,  0.,        0.       ]]

LTIRDiodeBridge = FirstOrderLinearTIR(C, B)
LTIRDiodeBridge.setDPtr(D)

nslaw = ComplementarityConditionNSL(4)
InterDiodeBridge = Interaction(4, nslaw, LTIRDiodeBridge, 1)


#
# Model
#
DiodeBridge = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(LSDiodeBridge)

#   link the interaction and the dynamical system
DiodeBridge.nonSmoothDynamicalSystem().link(InterDiodeBridge, LSDiodeBridge)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
gamma = 0.5
aOSI = EulerMoreauOSI(theta, gamma)
aOSI.insertDynamicalSystem(LSDiodeBridge)
#aOSI.setUseGammaForRelation(True)
B = [[0., 0., -1. / Cvalue, 1. / Cvalue], [0., 0., 0., 0.],
     [1.0 / Cfilt, 0., 1.0 / Cfilt, 0.]]

LTIRDiodeBridgeCapFilter = FirstOrderLinearTIR(C, B)
LTIRDiodeBridgeCapFilter.setDPtr(D)

nslaw = ComplementarityConditionNSL(4)
InterDiodeBridgeCapFilter = Interaction(4, nslaw, LTIRDiodeBridgeCapFilter, 1)

#
# Model
#
DiodeBridgeCapFilter = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem(
    LS1DiodeBridgeCapFilter)
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem(
    LS2DiodeBridgeCapFilter)

#   link the interaction and the dynamical system
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().link(InterDiodeBridgeCapFilter,
                                                     LS1DiodeBridgeCapFilter,
                                                     LS2DiodeBridgeCapFilter)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
gamma = 1.0
Exemplo n.º 8
0
def test_smc1():
    from siconos.kernel import FirstOrderLinearDS, Model, TimeDiscretisation, \
        TimeStepping, ZeroOrderHoldOSI, TD_EVENT
    from siconos.control.simulation import ControlManager
    from siconos.control.sensor import LinearSensor
    from siconos.control.controller import LinearSMCOT2
    from numpy import eye, empty, zeros
    import numpy as np
    from math import ceil, sin

    # Derive our own version of FirstOrderLinearDS
    class MyFOLDS(FirstOrderLinearDS):
        def computeb(self, time):
            t = sin(50*time)
            # XXX fix this !
            u = [t, -t]
            self.setb(u)

    # variable declaration
    ndof = 2   # Number of degrees of freedom of your system
    t0 = 0.0   # start time
    T = 1    # end time
    h = 1.0e-4  # time step for simulation
    hControl = 1.0e-2  # time step for control
    Xinit = 1.0  # initial position
    N = ceil((T-t0)/h + 10)  # number of time steps
    outputSize = 4  # number of variable to store at each time step

    # Matrix declaration
    A = zeros((ndof, ndof))
    x0 = [Xinit, -Xinit]
    Brel = np.array([[0], [1]])
    sensorC = eye(ndof)
    sensorD = zeros((ndof, ndof))
    Csurface = [[0, 1.0]]

    # Simple check
    if h > hControl:
        print("hControl must be bigger than h")
        exit(1)

    # Declaration of the Dynamical System
    processDS = MyFOLDS(x0, A)
    # XXX b is not automatically created ...
#    processDS.setb([0, 0])
    # Model
    process = Model(t0, T)
    process.nonSmoothDynamicalSystem().insertDynamicalSystem(processDS)
    # time discretization
    processTD = TimeDiscretisation(t0, h)
    tSensor = TimeDiscretisation(t0, hControl)
    tActuator = TimeDiscretisation(t0, hControl)
    # Creation of the Simulation
    processSimulation = TimeStepping(processTD, 0)
    processSimulation.setName("plant simulation")
    # Declaration of the integrator
    processIntegrator = ZeroOrderHoldOSI()
    process.nonSmoothDynamicalSystem().setOSI(processDS, processIntegrator)
    processSimulation.insertIntegrator(processIntegrator)
    # Actuator, Sensor & ControlManager
    control = ControlManager(processSimulation)
    sens = LinearSensor(processDS, sensorC, sensorD)

    control.addSensorPtr(sens, tSensor)
    act = LinearSMCOT2(sens)
    act.setCsurface(Csurface)
    act.setB(Brel)
    control.addActuatorPtr(act, tActuator)

    # Initialization.
    process.initialize(processSimulation)
    control.initialize(process)
    # This is not working right now
    # eventsManager = s.eventsManager()

    # Matrix for data storage
    dataPlot = empty((3*(N+1), outputSize))
    dataPlot[0, 0] = t0
    dataPlot[0, 1] = processDS.x()[0]
    dataPlot[0, 2] = processDS.x()[1]
    dataPlot[0, 3] = act.u()[0]

    # Main loop
    k = 1
    while processSimulation.hasNextEvent():
        if processSimulation.eventsManager().nextEvent().getType() == TD_EVENT:
            processSimulation.computeOneStep()
        dataPlot[k, 0] = processSimulation.nextTime()
        dataPlot[k, 1] = processDS.x()[0]
        dataPlot[k, 2] = processDS.x()[1]
        dataPlot[k, 3] = act.u()[0]
        k += 1
        processSimulation.nextStep()
    #    print processSimulation.nextTime()
    # Resize matrix
    dataPlot.resize(k, outputSize)
    # set external forces
    weight = [0, 0, - box1.mass() * g]
    body.setFExtPtr(weight)

    return body

# Initial box body
body = makeBox()

#
# Model
#
bouncingBox = Model(t0, T)

# add the dynamical system to the non smooth dynamical system
bouncingBox.nonSmoothDynamicalSystem().insertDynamicalSystem(body)

#
# Simulation
#

# (1) OneStepIntegrators
osi = MoreauJeanOSI(theta)
osi.insertDynamicalSystem(body)

ground = btCollisionObject()
ground.setCollisionFlags(btCollisionObject.CF_STATIC_OBJECT)
groundShape = btBoxShape(btVector3(30, 30, .5))
basis = btMatrix3x3()
basis.setIdentity()
ground.getWorldTransform().setBasis(basis)
# ds.computeMInt(1,x,v)
# ds._mInt.display()
# m=SiconosVector(3)
# ds.computeMInt(1,x,v,m)
# m.display()
# m=np.zeros(3)
# ds.computeMInt(1,x,v,m)
# print m
# raw_input()

# Model
#
model = Model(t0, T)

# add the dynamical system to the non smooth dynamical system
model.nonSmoothDynamicalSystem().insertDynamicalSystem(ds)

#
# Simulation
#

# (1) OneStepIntegrators
OSI = MoreauJeanOSI(theta)

# (2) Time discretisation --
t = TimeDiscretisation(t0, h)

# (3) one step non smooth problem
osnspb = LCP()

# (4) Simulation setup with (1) (2) (3)
Exemplo n.º 11
0
def test_diode_bridge():
    """Build diode bridge model"""
    # dynamical system
    bridge_ds = FirstOrderLinearDS(init_state, A)
    # interaction
    diode_bridge_relation = FirstOrderLinearTIR(C, B)
    diode_bridge_relation.setDPtr(D)

    nslaw = ComplementarityConditionNSL(4)
    bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1)

    # Model
    diode_bridge = Model(t0, total_time, model_title)

    #  add the dynamical system in the non smooth dynamical system
    diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds)

    #   link the interaction and the dynamical system
    diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds)

    # Simulation

    # (1) OneStepIntegrators
    theta = 0.5
    integrator = EulerMoreauOSI(theta)
    # (2) Time discretisation
    time_discretisation = TimeDiscretisation(t0, time_step)

    # (3) Non smooth problem
    non_smooth_problem = LCP()

    # (4) Simulation setup with (1) (2) (3)
    bridge_simulation = TimeStepping(time_discretisation,
                                     integrator, non_smooth_problem)

    # simulation initialization
    diode_bridge.setSimulation(bridge_simulation)
    diode_bridge.initialize()
    k = 0
    h = bridge_simulation.timeStep()
    # Number of time steps
    N = (total_time - t0) / h

    # Get the values to be plotted
    # ->saved in a matrix dataPlot
    data_plot = empty([N, 8])

    x = bridge_ds.x()
    print("Initial state : ", x)
    y = bridge_interaction.y(0)
    print("First y : ", y)
    lambda_ = bridge_interaction.lambda_(0)

    # For the initial time step:
    # time
    data_plot[k, 0] = t0

    #  inductor voltage
    data_plot[k, 1] = x[0]

    # inductor current
    data_plot[k, 2] = x[1]

    # diode R1 current
    data_plot[k, 3] = y[0]

    # diode R1 voltage
    data_plot[k, 4] = - lambda_[0]

    # diode F2 voltage
    data_plot[k, 5] = - lambda_[1]

    # diode F1 current
    data_plot[k, 6] = lambda_[2]

    # resistor current
    data_plot[k, 7] = y[0] + lambda_[2]

    k += 1
    while k < N:
        bridge_simulation.computeOneStep()
        #non_smooth_problem.display()
        data_plot[k, 0] = bridge_simulation.nextTime()
        #  inductor voltage
        data_plot[k, 1] = x[0]
        # inductor current
        data_plot[k, 2] = x[1]
        # diode R1 current
        data_plot[k, 3] = y[0]
        # diode R1 voltage
        data_plot[k, 4] = - lambda_[0]
        # diode F2 voltage
        data_plot[k, 5] = - lambda_[1]
        # diode F1 current
        data_plot[k, 6] = lambda_[2]
        # resistor current
        data_plot[k, 7] = y[0] + lambda_[2]
        k += 1
        bridge_simulation.nextStep()

    #
    # comparison with the reference file
    #
    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,
                                              "data/diode_bridge.ref")))
    assert norm(data_plot - ref) < 1e-12
    return ref, data_plot
Exemplo n.º 12
0
def test_diode_bridge():
    """Build diode bridge model"""
    # dynamical system
    bridge_ds = FirstOrderLinearDS(init_state, A)
    # interaction
    diode_bridge_relation = FirstOrderLinearTIR(C, B)
    diode_bridge_relation.setDPtr(D)

    nslaw = ComplementarityConditionNSL(4)
    bridge_interaction = Interaction(4, nslaw, diode_bridge_relation, 1)

    # Model
    diode_bridge = Model(t0, total_time, model_title)

    #  add the dynamical system in the non smooth dynamical system
    diode_bridge.nonSmoothDynamicalSystem().insertDynamicalSystem(bridge_ds)

    #   link the interaction and the dynamical system
    diode_bridge.nonSmoothDynamicalSystem().link(bridge_interaction, bridge_ds)

    # Simulation

    # (1) OneStepIntegrators
    theta = 0.5
    integrator = EulerMoreauOSI(theta)
    integrator.insertDynamicalSystem(bridge_ds)

    # (2) Time discretisation
    time_discretisation = TimeDiscretisation(t0, time_step)

    # (3) Non smooth problem
    non_smooth_problem = LCP()

    # (4) Simulation setup with (1) (2) (3)
    bridge_simulation = TimeStepping(time_discretisation, integrator,
                                     non_smooth_problem)

    # simulation initialization
    diode_bridge.initialize(bridge_simulation)
    k = 0
    h = bridge_simulation.timeStep()
    # Number of time steps
    N = (total_time - t0) / h

    # Get the values to be plotted
    # ->saved in a matrix dataPlot
    data_plot = empty([N, 8])

    x = bridge_ds.x()
    print("Initial state : ", x)
    y = bridge_interaction.y(0)
    print("First y : ", y)
    lambda_ = bridge_interaction.lambda_(0)

    # For the initial time step:
    # time
    data_plot[k, 0] = t0

    #  inductor voltage
    data_plot[k, 1] = x[0]

    # inductor current
    data_plot[k, 2] = x[1]

    # diode R1 current
    data_plot[k, 3] = y[0]

    # diode R1 voltage
    data_plot[k, 4] = -lambda_[0]

    # diode F2 voltage
    data_plot[k, 5] = -lambda_[1]

    # diode F1 current
    data_plot[k, 6] = lambda_[2]

    # resistor current
    data_plot[k, 7] = y[0] + lambda_[2]

    k += 1
    while k < N:
        bridge_simulation.computeOneStep()
        #non_smooth_problem.display()
        data_plot[k, 0] = bridge_simulation.nextTime()
        #  inductor voltage
        data_plot[k, 1] = x[0]
        # inductor current
        data_plot[k, 2] = x[1]
        # diode R1 current
        data_plot[k, 3] = y[0]
        # diode R1 voltage
        data_plot[k, 4] = -lambda_[0]
        # diode F2 voltage
        data_plot[k, 5] = -lambda_[1]
        # diode F1 current
        data_plot[k, 6] = lambda_[2]
        # resistor current
        data_plot[k, 7] = y[0] + lambda_[2]
        k += 1
        bridge_simulation.nextStep()

    #
    # comparison with the reference file
    #
    ref = getMatrix(
        SimpleMatrix(os.path.join(working_dir, "data/diode_bridge.ref")))
    assert norm(data_plot - ref) < 1e-12
    return ref, data_plot
Exemplo n.º 13
0
B = [[-1. / Cvalue], [0.]]

LTIRCircuitRLCD = FirstOrderLinearTIR(C, B)
LTIRCircuitRLCD.setDPtr(D)

nslaw = ComplementarityConditionNSL(1)
InterCircuitRLCD = Interaction(1, nslaw, LTIRCircuitRLCD, 1)

#
# Model
#
CircuitRLCD = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
CircuitRLCD.nonSmoothDynamicalSystem().insertDynamicalSystem(LSCircuitRLCD)

#   link the interaction and the dynamical system
CircuitRLCD.nonSmoothDynamicalSystem().link(InterCircuitRLCD, LSCircuitRLCD)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
aOSI = EulerMoreauOSI(theta)
aOSI.insertDynamicalSystem(LSCircuitRLCD)

# (2) Time discretisation
aTiDisc = TimeDiscretisation(t0, h_step)
Exemplo n.º 14
0
B = [[0., 0., -1. / Cvalue, 1. / Cvalue], [0., 0., 0., 0.]]

LTIRDiodeBridge = FirstOrderLinearTIR(C, B)
LTIRDiodeBridge.setDPtr(D)

nslaw = ComplementarityConditionNSL(4)
InterDiodeBridge = Interaction(4, nslaw, LTIRDiodeBridge, 1)

#
# Model
#
DiodeBridge = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(LSDiodeBridge)

#   link the interaction and the dynamical system
DiodeBridge.nonSmoothDynamicalSystem().link(InterDiodeBridge, LSDiodeBridge)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
gamma = 0.5
aOSI = EulerMoreauOSI(theta, gamma)
aOSI.insertDynamicalSystem(LSDiodeBridge)
#aOSI.setUseGammaForRelation(True)
     [0.,        0.,  0.,        0.       ],
     [1.0/Cfilt,        0.,  1.0/Cfilt,        0.       ]]

LTIRDiodeBridgeCapFilter = FirstOrderLinearTIR(C, B)
LTIRDiodeBridgeCapFilter.setDPtr(D)

nslaw = ComplementarityConditionNSL(4)
InterDiodeBridgeCapFilter = Interaction(4, nslaw, LTIRDiodeBridgeCapFilter, 1)

#
# Model
#
DiodeBridgeCapFilter = Model(t0, T, Modeltitle)

#   add the dynamical system in the non smooth dynamical system
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem(LS1DiodeBridgeCapFilter)
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().insertDynamicalSystem(LS2DiodeBridgeCapFilter)

#   link the interaction and the dynamical system
DiodeBridgeCapFilter.nonSmoothDynamicalSystem().link(InterDiodeBridgeCapFilter, LS1DiodeBridgeCapFilter, LS2DiodeBridgeCapFilter)

#
# Simulation
#

# (1) OneStepIntegrators
theta = 0.5
gamma = 1.0
aOSI = EulerMoreauOSI(theta, gamma)
aOSI.insertDynamicalSystem(LS1DiodeBridgeCapFilter)
aOSI.insertDynamicalSystem(LS2DiodeBridgeCapFilter)
Exemplo n.º 16
0
#

# ball-floor
H = [[1, 0, 0]]

nslaw = NewtonImpactNSL(e)
relation = LagrangianLinearTIR(H)
inter = Interaction(nslaw, relation)

#
# Model
#
bouncingBall = Model(t0, T)

# add the dynamical system to the non smooth dynamical system
bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)

# link the interaction and the dynamical system
bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)


#
# Simulation
#

# (1) OneStepIntegrators
OSI = MoreauJeanOSI(theta)
OSI.insertDynamicalSystem(ball)

# (2) Time discretisation --
t = TimeDiscretisation(t0, h)
Exemplo n.º 17
0
def test_diodebridge1():
    from siconos.kernel import FirstOrderLinearDS, FirstOrderLinearTIR, \
                               ComplementarityConditionNSL, Interaction,\
                               Model, EulerMoreauOSI, TimeDiscretisation, LCP,  \
                               TimeStepping
    from numpy import empty
    from siconos.kernel import SimpleMatrix, getMatrix
    from numpy.linalg import norm

    t0 = 0.0
    T = 5.0e-3       # Total simulation time
    h_step = 1.0e-6  # Time step
    Lvalue = 1e-2  # inductance
    Cvalue = 1e-6   # capacitance
    Rvalue = 1e3    # resistance
    Vinit = 10.0    # initial voltage
    Modeltitle = "DiodeBridge"

    #
    # dynamical system
    #

    init_state = [Vinit, 0]

    A = [[0,          -1.0/Cvalue],
         [1.0/Lvalue, 0          ]]

    LSDiodeBridge=FirstOrderLinearDS(init_state, A)

    #
    # Interactions
    #

    C = [[0.,   0.],
         [0,    0.],
         [-1.,  0.],
         [1.,   0.]]

    D = [[1./Rvalue, 1./Rvalue, -1.,  0.],
         [1./Rvalue, 1./Rvalue,  0., -1.],
         [1.,        0.,         0.,  0.],
         [0.,        1.,         0.,  0.]]

    B = [[0.,        0., -1./Cvalue, 1./Cvalue],
         [0.,        0.,  0.,        0.       ]]

    LTIRDiodeBridge=FirstOrderLinearTIR(C, B)
    LTIRDiodeBridge.setDPtr(D)

    LTIRDiodeBridge.display()
    nslaw=ComplementarityConditionNSL(4)
    InterDiodeBridge=Interaction(4, nslaw, LTIRDiodeBridge, 1)


    #
    # Model
    #
    DiodeBridge=Model(t0, T, Modeltitle)

    #   add the dynamical system in the non smooth dynamical system
    DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(LSDiodeBridge)

    #   link the interaction and the dynamical system
    DiodeBridge.nonSmoothDynamicalSystem().link(InterDiodeBridge, LSDiodeBridge)

    #
    # Simulation
    #

    # (1) OneStepIntegrators
    theta = 0.5
    aOSI = EulerMoreauOSI(LSDiodeBridge, theta)

    # (2) Time discretisation
    aTiDisc = TimeDiscretisation(t0, h_step)

    # (3) Non smooth problem
    aLCP = LCP()

    # (4) Simulation setup with (1) (2) (3)
    aTS = TimeStepping(aTiDisc, aOSI, aLCP)

    # end of model definition

    #
    # computation
    #

    # simulation initialization
    DiodeBridge.initialize(aTS)

    k = 0
    h = aTS.timeStep()
    print("Timestep : ", h)
    # Number of time steps
    N = (T-t0)/h
    print("Number of steps : ", N)

    # Get the values to be plotted
    # ->saved in a matrix dataPlot

    dataPlot = empty([N, 8])

    x = LSDiodeBridge.x()
    print("Initial state : ", x)
    y = InterDiodeBridge.y(0)
    print("First y : ", y)
    lambda_ = InterDiodeBridge.lambda_(0)

    # For the initial time step:
    # time
    dataPlot[k, 0] = t0

    #  inductor voltage
    dataPlot[k, 1] = x[0]

    # inductor current
    dataPlot[k, 2] = x[1]

    # diode R1 current
    dataPlot[k, 3] = y[0]

    # diode R1 voltage
    dataPlot[k, 4] = - lambda_[0]

    # diode F2 voltage
    dataPlot[k, 5] = - lambda_[1]

    # diode F1 current
    dataPlot[k, 6] = lambda_[2]

    # resistor current
    dataPlot[k, 7] = y[0] + lambda_[2]

    k += 1
    while (k < N):
        aTS.computeOneStep()
        #aLCP.display()
        dataPlot[k, 0] = aTS.nextTime()
        #  inductor voltage
        dataPlot[k, 1] = x[0]
        # inductor current
        dataPlot[k, 2] = x[1]
        # diode R1 current
        dataPlot[k, 3] = y[0]
        # diode R1 voltage
        dataPlot[k, 4] = - lambda_[0]
        # diode F2 voltage
        dataPlot[k, 5] = - lambda_[1]
        # diode F1 current
        dataPlot[k, 6] = lambda_[2]
        # resistor current
        dataPlot[k, 7] = y[0] + lambda_[2]
        k += 1
        aTS.nextStep()

    #
    # comparison with the reference file
    #
    ref = getMatrix(SimpleMatrix(os.path.join(working_dir,"data/diode_bridge.ref")))

    print(norm(dataPlot - ref))
    assert (norm(dataPlot - ref) < 1e-12)
    return ref, dataPlot