Exemplo n.º 1
0
    def create(self, generator: BatchExpDefGenerator) -> None:
        utils.dir_create_checked(self.batch_input_root,
                                 self.cmdopts['exp_overwrite'])

        # Scaffold the batch experiment, creating experiment directories and
        # writing template XML input files for each experiment in the batch with
        # changes from the batch criteria added.
        exp_def = xml.XMLLuigi(input_fpath=self.batch_config_template,
                               write_config=xml.XMLWriterConfig({'.': ''}))

        self.criteria.scaffold_exps(exp_def, self.cmdopts)

        # Pickle experiment definitions in the actual batch experiment
        # directory for later retrieval.
        self.criteria.pickle_exp_defs(self.cmdopts)

        # Run batch experiment generator (must be after scaffolding so the
        # per-experiment template files are in place).
        defs = generator.generate_defs()

        assert len(defs) > 0, "No XML modifications generated?"

        for i, defi in enumerate(defs):
            self.logger.debug(
                "Applying generated scenario+controller changes to exp%s", i)
            exp_output_root = os.path.join(
                self.batch_output_root,
                self.criteria.gen_exp_dirnames(self.cmdopts)[i])
            exp_input_root = os.path.join(
                self.batch_input_root,
                self.criteria.gen_exp_dirnames(self.cmdopts)[i])

            ExpCreator(self.cmdopts, self.criteria, self.batch_config_template,
                       exp_input_root, exp_output_root, i).from_def(defi)
Exemplo n.º 2
0
    def __init__(self, main_config: tp.Dict[str, types.Cmdopts],
                 cmdopts: types.Cmdopts) -> None:
        self.main_config = main_config
        self.cmdopts = cmdopts

        self.batch_stat_collate_root = self.cmdopts['batch_stat_collate_root']
        utils.dir_create_checked(self.batch_stat_collate_root, exist_ok=True)
Exemplo n.º 3
0
    def __call__(self, main_config: types.YAMLDict,
                 criteria: bc.IConcreteBatchCriteria) -> None:
        exp_to_run = utils.exp_range_calc(self.cmdopts,
                                          self.cmdopts['batch_output_root'],
                                          criteria)
        exp_dirnames = criteria.gen_exp_dirnames(self.cmdopts)

        for i, exp in enumerate(exp_to_run):
            exp = os.path.split(exp)[1]
            exp_index = exp_dirnames.index(exp)

            cmdopts = copy.deepcopy(self.cmdopts)
            cmdopts["exp0_output_root"] = os.path.join(
                self.cmdopts["batch_output_root"], exp_dirnames[0])
            cmdopts["exp0_stat_root"] = os.path.join(
                self.cmdopts["batch_stat_root"], exp_dirnames[0])

            cmdopts["exp_input_root"] = os.path.join(
                self.cmdopts['batch_input_root'], exp)
            cmdopts["exp_output_root"] = os.path.join(
                self.cmdopts['batch_output_root'], exp)
            cmdopts["exp_graph_root"] = os.path.join(
                self.cmdopts['batch_graph_root'], exp)
            cmdopts["exp_stat_root"] = os.path.join(
                self.cmdopts["batch_stat_root"], exp)
            cmdopts["exp_model_root"] = os.path.join(
                cmdopts['batch_model_root'], exp)

            utils.dir_create_checked(cmdopts['exp_model_root'], exist_ok=True)

            for model in self.models:
                if not model.run_for_exp(criteria, cmdopts, exp_index):
                    self.logger.debug(
                        "Skip running intra-experiment model from '%s' for exp%s",
                        str(model), exp_index)
                    continue

                # Run the model
                self.logger.debug("Run intra-experiment model '%s' for exp%s",
                                  str(model), exp_index)
                dfs = model.run(criteria, exp_index, cmdopts)
                for df, csv_stem in zip(dfs, model.target_csv_stems()):
                    path_stem = os.path.join(cmdopts['exp_model_root'],
                                             csv_stem)

                    # Write model legend file so the generated graph can find it
                    with open(path_stem + '.legend', 'w') as f:
                        for i, search in enumerate(dfs):
                            if search.values.all() == df.values.all():
                                legend = model.legend_names()[i]
                                f.write(legend)
                                break

                    # Write model .csv file
                    storage.DataFrameWriter('storage.csv')(df,
                                                           path_stem +
                                                           '.model',
                                                           index=False)
Exemplo n.º 4
0
    def __call__(self, exp_input_root: str, exp_num: int) -> None:
        """Executes experimental runs for a single experiment in parallel.

        Arguments:

            n_jobs: How many concurrent jobs are allowed?

            exec_resume: Is this run of SIERRA resuming a previous run that
                         failed/did not finish?

            nodefile: List of compute resources to use for the experiment.
        """

        self.logger.info("Running exp%s in '%s'", exp_num, exp_input_root)
        sys.stdout.flush()

        wd = os.path.relpath(exp_input_root, os.path.expanduser("~"))
        start = time.time()
        _, exp = os.path.split(exp_input_root)

        scratch_root = os.path.join(self.cmdopts['batch_scratch_root'], exp)
        utils.dir_create_checked(scratch_root, exist_ok=True)

        assert self.cmdopts['exec_jobs_per_node'] is not None, \
            "# parallel jobs can't be None"

        exec_opts = {
            'exp_input_root':
            exp_input_root,
            'work_dir':
            wd,
            'scratch_dir':
            scratch_root,
            'cmdfile_stem_path':
            os.path.join(exp_input_root, config.kGNUParallel['cmdfile_stem']),
            'cmdfile_ext':
            config.kGNUParallel['cmdfile_ext'],
            'exec_resume':
            self.cmdopts['exec_resume'],
            'n_jobs':
            self.cmdopts['exec_jobs_per_node'],
            'nodefile':
            self.cmdopts['nodefile']
        }
        for spec in self.generator.exec_exp_cmds(exec_opts):
            if not self.shell.run_from_spec(spec):
                self.logger.error("Check outputs in %s for full details",
                                  exec_opts['scratch_dir'])

        elapsed = int(time.time() - start)
        sec = datetime.timedelta(seconds=elapsed)
        self.logger.info('Exp%s elapsed time: %s', exp_num, sec)

        with open(self.exec_times_fpath, 'a') as f:
            f.write('exp' + str(exp_num) + ': ' + str(sec) + '\n')
Exemplo n.º 5
0
    def __init__(self, cmdopts: types.Cmdopts,
                 criteria: bc.BatchCriteria) -> None:
        self.cmdopts = cmdopts
        self.criteria = criteria

        self.batch_exp_root = os.path.abspath(self.cmdopts['batch_input_root'])
        self.batch_stat_root = os.path.abspath(self.cmdopts['batch_stat_root'])
        self.batch_stat_exec_root = os.path.join(self.batch_stat_root, 'exec')
        self.batch_scratch_root = os.path.abspath(
            self.cmdopts['batch_scratch_root'])
        self.exec_exp_range = self.cmdopts['exp_range']

        self.logger = logging.getLogger(__name__)

        utils.dir_create_checked(self.batch_stat_exec_root, exist_ok=True)
        utils.dir_create_checked(self.batch_scratch_root, exist_ok=True)
Exemplo n.º 6
0
    def _scaffold_expi(self,
                       expi_def: xml.XMLLuigi,
                       modsi: tp.Union[xml.XMLAttrChangeSet, xml.XMLTagAddList],
                       i: int,
                       cmdopts: types.Cmdopts) -> None:
        exp_dirname = self.gen_exp_dirnames(cmdopts)[i]
        self.logger.debug("Applying %s XML modifications from '%s' for exp%s in %s",
                          len(modsi),
                          self.cli_arg,
                          i,
                          exp_dirname)

        exp_input_root = os.path.join(self.batch_input_root,
                                      str(exp_dirname))

        utils.dir_create_checked(exp_input_root,
                                 exist_ok=cmdopts['exp_overwrite'])

        for mod in modsi:
            if isinstance(mod, xml.XMLAttrChange):
                expi_def.attr_change(mod.path, mod.attr, mod.value)
            elif isinstance(mod, xml.XMLTagAdd):
                expi_def.tag_add(mod.path, mod.tag, mod.attr, mod.allow_dup)
            else:
                assert False,\
                    "Batch criteria can only modify or remove XML tags"

        # This will be the "template" input file used to generate the input
        # files for each experimental run in the experiment
        wr_config = xml.XMLWriterConfig([{'src_parent': None,
                                          'src_tag': '.',
                                          'opath_leaf': None,
                                          'create_tags': None,
                                          'dest_parent': None
                                          }])
        expi_def.write_config_set(wr_config)
        opath = utils.batch_template_path(cmdopts,
                                          self.batch_input_root,
                                          exp_dirname)
        expi_def.write(opath)
Exemplo n.º 7
0
    def __call__(self, main_config: types.YAMLDict,
                 criteria: bc.IConcreteBatchCriteria) -> None:

        cmdopts = copy.deepcopy(self.cmdopts)

        utils.dir_create_checked(cmdopts['batch_model_root'], exist_ok=True)
        utils.dir_create_checked(cmdopts['batch_graph_collate_root'],
                                 exist_ok=True)

        for model in self.models:
            if not model.run_for_batch(criteria, cmdopts):
                self.logger.debug("Skip running inter-experiment model '%s'",
                                  str(model))
                continue

            # Run the model
            self.logger.debug("Run inter-experiment model '%s'", str(model))

            dfs = model.run(criteria, cmdopts)

            for df, csv_stem in zip(dfs, model.target_csv_stems()):
                path_stem = os.path.join(cmdopts['batch_model_root'], csv_stem)

                # Write model .csv file
                storage.DataFrameWriter('storage.csv')(df,
                                                       path_stem + '.model',
                                                       index=False)

                # 1D dataframe -> line graph with legend
                if len(df.index) == 1:
                    # Write model legend file so the generated graph can find it
                    with open(path_stem + '.legend', 'w') as f:
                        for i, search in enumerate(dfs):
                            if search.values.all() == df.values.all():
                                legend = model.legend_names()[i]
                                f.write(legend)
                                break
Exemplo n.º 8
0
 def for_exp_run(self, exp_input_root: str, run_output_root: str) -> None:
     if self.cmdopts['platform_vc']:
         frames_fpath = os.path.join(run_output_root,
                                     config.kARGoS['frames_leaf'])
         utils.dir_create_checked(frames_fpath, exist_ok=True)