Exemplo n.º 1
0
    def __call__(self, main_config: types.YAMLDict,
                 criteria: bc.IConcreteBatchCriteria) -> None:
        exp_to_run = utils.exp_range_calc(self.cmdopts,
                                          self.cmdopts['batch_output_root'],
                                          criteria)
        exp_dirnames = criteria.gen_exp_dirnames(self.cmdopts)

        for i, exp in enumerate(exp_to_run):
            exp = os.path.split(exp)[1]
            exp_index = exp_dirnames.index(exp)

            cmdopts = copy.deepcopy(self.cmdopts)
            cmdopts["exp0_output_root"] = os.path.join(
                self.cmdopts["batch_output_root"], exp_dirnames[0])
            cmdopts["exp0_stat_root"] = os.path.join(
                self.cmdopts["batch_stat_root"], exp_dirnames[0])

            cmdopts["exp_input_root"] = os.path.join(
                self.cmdopts['batch_input_root'], exp)
            cmdopts["exp_output_root"] = os.path.join(
                self.cmdopts['batch_output_root'], exp)
            cmdopts["exp_graph_root"] = os.path.join(
                self.cmdopts['batch_graph_root'], exp)
            cmdopts["exp_stat_root"] = os.path.join(
                self.cmdopts["batch_stat_root"], exp)
            cmdopts["exp_model_root"] = os.path.join(
                cmdopts['batch_model_root'], exp)

            utils.dir_create_checked(cmdopts['exp_model_root'], exist_ok=True)

            for model in self.models:
                if not model.run_for_exp(criteria, cmdopts, exp_index):
                    self.logger.debug(
                        "Skip running intra-experiment model from '%s' for exp%s",
                        str(model), exp_index)
                    continue

                # Run the model
                self.logger.debug("Run intra-experiment model '%s' for exp%s",
                                  str(model), exp_index)
                dfs = model.run(criteria, exp_index, cmdopts)
                for df, csv_stem in zip(dfs, model.target_csv_stems()):
                    path_stem = os.path.join(cmdopts['exp_model_root'],
                                             csv_stem)

                    # Write model legend file so the generated graph can find it
                    with open(path_stem + '.legend', 'w') as f:
                        for i, search in enumerate(dfs):
                            if search.values.all() == df.values.all():
                                legend = model.legend_names()[i]
                                f.write(legend)
                                break

                    # Write model .csv file
                    storage.DataFrameWriter('storage.csv')(df,
                                                           path_stem +
                                                           '.model',
                                                           index=False)
Exemplo n.º 2
0
    def __call__(self, criteria: bc.IConcreteBatchCriteria, target: dict,
                 stat_collate_root: str) -> None:
        self.logger.info(
            "Stage4: Collating bivariate files from batch in %s for graph '%s'...",
            self.cmdopts['batch_output_root'], target['src_stem'])
        self.logger.trace(json.dumps(target, indent=4))

        exp_dirs = utils.exp_range_calc(self.cmdopts,
                                        self.cmdopts['batch_output_root'],
                                        criteria)

        xlabels, ylabels = utils.bivar_exp_labels_calc(exp_dirs)

        if self.cmdopts['dist_stats'] in ['conf95', 'all']:
            exts = [
                config.kStatsExtensions['mean'],
                config.kStatsExtensions['stddev']
            ]
        elif self.cmdopts['dist_stats'] in ['bw', 'all']:
            exts = [
                config.kStatsExtensions['min'], config.kStatsExtensions['max'],
                config.kStatsExtensions['mean'],
                config.kStatsExtensions['whislo'],
                config.kStatsExtensions['whishi'],
                config.kStatsExtensions['cilo'],
                config.kStatsExtensions['cihi'],
                config.kStatsExtensions['median']
            ]

        stats = [
            BivarGraphCollationInfo(df_ext=ext,
                                    xlabels=xlabels,
                                    ylabels=ylabels) for ext in exts
        ]

        for i, diri in enumerate(exp_dirs):
            # We get full paths back from the exp dirs calculation, and we need to work with path
            # leaves
            diri = os.path.split(diri)[1]
            self._collate_exp(target, diri, stats)

        for stat in stats:
            if stat.all_srcs_exist:
                storage.DataFrameWriter('storage.csv')(
                    stat.df,
                    os.path.join(stat_collate_root,
                                 target['dest_stem'] + stat.df_ext),
                    index=False)

            elif stat.some_srcs_exist:
                self.logger.warning(
                    "Not all experiments in '%s' produced '%s%s'",
                    self.cmdopts['batch_output_root'], target['src_stem'],
                    stat.df_ext)
Exemplo n.º 3
0
    def __call__(self) -> None:
        """
        Runs experiments in the batch according to configuration.

        """
        self.logger.info("Platform='%s' exec_env='%s'",
                         self.cmdopts['platform'], self.cmdopts['exec_env'])

        module = pm.pipeline.get_plugin_module(self.cmdopts['platform'])
        module.pre_exp_diagnostics(self.cmdopts, self.logger)

        exp_all = [
            os.path.join(self.batch_exp_root, d)
            for d in self.criteria.gen_exp_dirnames(self.cmdopts)
        ]

        exp_to_run = utils.exp_range_calc(self.cmdopts, self.batch_exp_root,
                                          self.criteria)

        # Verify environment is OK before running anything
        platform.ExecEnvChecker(self.cmdopts)()

        # Calculate path for to file for logging execution times
        now = datetime.datetime.now()
        exec_times_fpath = os.path.join(self.batch_stat_exec_root,
                                        now.strftime("%Y-%m-%e-%H:%M"))

        # Start a new process for the experiment shell so pre-run commands have
        # an effect (if they set environment variables, etc.).
        shell = ExpShell()

        # Run the experiment!
        for exp in exp_to_run:
            exp_num = exp_all.index(exp)

            # Run cmds for platform-specific things to setup the experiment
            # (e.g., start daemons) if needed.
            generator = platform.ExpShellCmdsGenerator(self.cmdopts, exp_num)
            for spec in generator.pre_exp_cmds():
                shell.run_from_spec(spec)

            runner = ExpRunner(self.cmdopts, exec_times_fpath, generator,
                               shell)
            runner(exp, exp_num)

        # Run cmds to cleanup platform-specific things now that the experiment
        # is done (if needed).
        for spec in generator.post_exp_cmds():
            shell.run_from_spec(spec)
Exemplo n.º 4
0
    def graph_yticklabels(self,
                          cmdopts: types.Cmdopts,
                          exp_dirs: tp.Optional[tp.List[str]] = None) -> tp.List[str]:
        dirs = []
        all_dirs = utils.exp_range_calc(cmdopts,
                                        cmdopts['batch_output_root'],
                                        self)

        for c2 in self.criteria2.gen_exp_dirnames(cmdopts):
            for y in all_dirs:
                leaf = os.path.split(y)[1]
                if c2 in leaf.split('+')[1]:
                    dirs.append(leaf)
                    break

        return self.criteria2.graph_xticklabels(cmdopts, dirs)