Exemplo n.º 1
0
def predict(network, x):
    w1, w2, w3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, w1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, w2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, w3) + b3
    y = softmax(a3)

    return y
Exemplo n.º 2
0
def forward(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z2, W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, W3) + b3
    y = identity_function(a3)

    return y
Exemplo n.º 3
0
def forward(network, x):
    w1, w2, w3 = network['w1'], network['w2'], network['w3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, w1) + b1
    z1 = sg.sigmoid(a1)
    a2 = np.dot(z1, w2) + b2
    z2 = sg.sigmoid(a2)
    a3 = np.dot(z2, w3) + b3
    y = it.identity_function(a3)

    return y
Exemplo n.º 4
0
import numpy as np
from sigmoid_function import sigmoid

X = np.array([1.0, 0.5])
W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
B1 = np.array([0.1, 0.2, 0.3])

print(W1.shape)
print(X.shape)
print(B1.shape)

A1 = np.dot(X, W1) + B1

Z1 = sigmoid(A1)

print(A1)
print(Z1)

# second layer
W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
B2 = np.array([0.1, 0.2])

print(Z1.shape)
print(W2.shape)
print(B2.shape)

A2 = np.dot(Z1, W2) + B2
Z2 = sigmoid(A2)

print(A2)
print(Z2)
Exemplo n.º 5
0
import numpy as np
import sigmoid_function as sg

x = np.array([1.0, 0.5])
w1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
b1 = np.array([0.1, 0.2, 0.3])
a1 = np.dot(x, w1) + b1
print(a1)
z1 = sg.sigmoid(a1)
print(z1)

w2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.4, 0.6]])
b2 = np.array([0.1, 0.2])
a2 = np.dot(z1, w2)
z2 = sg.sigmoid(a2)
print(z2)
Exemplo n.º 6
0
import numpy as np
from sigmoid_function import sigmoid
from identity_function import identity_function

# first ----------------------
# definition
X = np.array([1.0, 0.5])
W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
B1 = np.array([0.1, 0.2, 0.3])

A1 = np.dot(X, W1) + B1
print(A1)
Z1 = sigmoid(A1)  # activation function
print(Z1)

# second ----------------------
# definition
W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
B2 = np.array([0.1, 0.2])

A2 = np.dot(Z1, W2) + B2
print(A2)
Z2 = sigmoid(A2)
print(Z2)

# final
# definition
W3 = np.array([[0.1, 0.3], [0.2, 0.4]])
B3 = np.array([0.1, 0.2])

A3 = np.dot(Z2, W3) + B3