Exemplo n.º 1
0
def deletion_links_effect(k, periodoborr, minputchar_a, minputchar_b,
                          minputchar_a_mask, minputchar_b_mask, ldev_inf):
    minputchar_a, fil, col = delete_link(minputchar_a)
    minputchar_b[col][fil] = 0
    minpeq_a = minputchar_a * minputchar_a_mask
    minpeq_b = minputchar_b * minputchar_b_mask
    sgcom.inform_user(ldev_inf, \
    "Day:%d (year %d). Deleted links plant %d <-> pollinator %d"\
    % (k, k // sgGL.DAYS_YEAR , int_to_ext_rep(fil), int_to_ext_rep(col)))
    return minpeq_a, minpeq_b, minputchar_a, minputchar_b,
Exemplo n.º 2
0
def init_random_links_removal(eliminarenlaces, periods, ldev_inf, minputchar_a):
    periodoborr = periods
    if eliminarenlaces > 0:
        cuenta = cuentaenlaces(minputchar_a)
        hayqueborrar = math.trunc(eliminarenlaces * cuenta)
        sgcom.inform_user(ldev_inf, "Links %d. Will be deleted %d" %\
                          (cuentaenlaces(minputchar_a), hayqueborrar))
        if hayqueborrar > 0:
            periodoborr = periods // (hayqueborrar)
    return periodoborr
Exemplo n.º 3
0
def deletion_links_effect(k, periodoborr, minputchar_a, minputchar_b,
                          minputchar_a_mask, minputchar_b_mask, ldev_inf):
    minputchar_a, fil, col = delete_link(minputchar_a)
    minputchar_b[col][fil] = 0
    minpeq_a = minputchar_a * minputchar_a_mask
    minpeq_b = minputchar_b * minputchar_b_mask
    sgcom.inform_user(ldev_inf, \
    "Day:%d (year %d). Deleted links plant %d <-> pollinator %d"\
    % (k, k // sgGL.DAYS_YEAR , int_to_ext_rep(fil), int_to_ext_rep(col)))
    return minpeq_a, minpeq_b, minputchar_a, minputchar_b,
Exemplo n.º 4
0
def init_random_links_removal(eliminarenlaces, periods, ldev_inf,
                              minputchar_a):
    periodoborr = periods
    if eliminarenlaces > 0:
        cuenta = cuentaenlaces(minputchar_a)
        hayqueborrar = math.trunc(eliminarenlaces * cuenta)
        sgcom.inform_user(ldev_inf, "Links %d. Will be deleted %d" %\
                          (cuentaenlaces(minputchar_a), hayqueborrar))
        if hayqueborrar > 0:
            periodoborr = periods // (hayqueborrar)
    return periodoborr
Exemplo n.º 5
0
def init_blossom_pertubation_params(BssDat, numspecies_a, year_periods,
                                    ldev_inf):
    # Blossom variability analysis
    global pendiente, periodo
    pBssvar_species = []
    pendiente = periodo = 0
    hay_bssvar = (BssDat.Bssvar_sd > 0.0) & (len(BssDat.Bssvar_species) > 0)
    if (hay_bssvar):
        if (BssDat.Bssvar_modulationtype_list[0] == 'linear'):
            strvalor = (", Slope %0.2f " %
                        (BssDat.Bssvar_modulationtype_list[1]))
        else:
            if (BssDat.Bssvar_modulationtype_list[0] == 'sin'):
                strvalor = (", Period %0.2f " %
                            (BssDat.Bssvar_modulationtype_list[1]))
            else:
                strvalor = ''
        straff = (". Affected species:%s" % (BssDat.Bssvar_species))
        sgcom.inform_user(ldev_inf, "Blossom variability active. Period: %0.2f (%% of year), Initial moment standard dev.: %0.04f (%% of year), Type: %s%s%s "\
                % (BssDat.Bssvar_period, BssDat.Bssvar_sd, BssDat.Bssvar_modulationtype_list[0],
                   strvalor, straff))
        if (str(BssDat.Bssvar_species[0]).upper() == 'ALL'):
            listaspecies = list(range(numspecies_a))
        else:
            listaspecies = [i - 1 for i in BssDat.Bssvar_species]

        bssvar_allones = np.ones((year_periods, ), dtype=float)
        #for i in range(numspecies_a):
        for i in range_species_a:
            if i in listaspecies:
                if (BssDat.Bssvar_modulationtype_list[0] == 'None'):
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period,
                                                   BssDat.Bssvar_sd,
                                                   bss_pert_no_modulation,
                                                   year_periods)
                elif (BssDat.Bssvar_modulationtype_list[0] == 'linear'):
                    pendiente = float(BssDat.Bssvar_modulationtype_list[1])
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period,
                                                   BssDat.Bssvar_sd,
                                                   bss_pert_lineal,
                                                   year_periods)
                elif (BssDat.Bssvar_modulationtype_list[0] == 'sin'):
                    periodo = int(BssDat.Bssvar_modulationtype_list[1])
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period,
                                                   BssDat.Bssvar_sd,
                                                   bss_pert_sinusoidal,
                                                   year_periods)
                pBssvar_species.append(np.array(varspecies))
            else:
                pBssvar_species.append(bssvar_allones)
    return pBssvar_species, hay_bssvar, pendiente, periodo
Exemplo n.º 6
0
def init_blossom_pertubation_params(BssDat, numspecies_a,
                    year_periods, ldev_inf):
    # Blossom variability analysis
    global pendiente, periodo
    pBssvar_species = []
    pendiente = periodo = 0 
    hay_bssvar = (BssDat.Bssvar_sd > 0.0) & (len(BssDat.Bssvar_species) > 0)
    if (hay_bssvar):
        if (BssDat.Bssvar_modulationtype_list[0] == 'linear'):
            strvalor = (", Slope %0.2f " % (BssDat.Bssvar_modulationtype_list[1]))
        else:
            if (BssDat.Bssvar_modulationtype_list[0] == 'sin'):
                strvalor = (", Period %0.2f " % (BssDat.Bssvar_modulationtype_list[1]))
            else:
                strvalor = ''
        straff = (". Affected species:%s" % (BssDat.Bssvar_species))
        sgcom.inform_user(ldev_inf, "Blossom variability active. Period: %0.2f (%% of year), Initial moment standard dev.: %0.04f (%% of year), Type: %s%s%s "\
                % (BssDat.Bssvar_period, BssDat.Bssvar_sd, BssDat.Bssvar_modulationtype_list[0], 
                   strvalor, straff))
        if (str(BssDat.Bssvar_species[0]).upper() == 'ALL'):
            listaspecies = list(range(numspecies_a))
        else:
            listaspecies = [i-1 for i in BssDat.Bssvar_species]
            
        bssvar_allones = np.ones((year_periods,), dtype=float)
        #for i in range(numspecies_a):
        for i in range_species_a:
            if i in listaspecies:
                if (BssDat.Bssvar_modulationtype_list[0] == 'None'):
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period, BssDat.Bssvar_sd,
                                           bss_pert_no_modulation, year_periods)
                elif (BssDat.Bssvar_modulationtype_list[0] == 'linear'):
                    pendiente = float(BssDat.Bssvar_modulationtype_list[1])
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period, BssDat.Bssvar_sd,
                                           bss_pert_lineal, year_periods)
                elif (BssDat.Bssvar_modulationtype_list[0] == 'sin'):
                    periodo = int(BssDat.Bssvar_modulationtype_list[1])
                    varspecies = calcbssvarespecie(BssDat.Bssvar_period, BssDat.Bssvar_sd,
                                           bss_pert_sinusoidal, year_periods)            
                pBssvar_species.append(np.array(varspecies))
            else:
                pBssvar_species.append(bssvar_allones)  
    return pBssvar_species, hay_bssvar, pendiente, periodo
Exemplo n.º 7
0
def predators_population_evolution(hay_foodweb, ldev_inf, numspecies_a,
                                   Nindividuals_a, numspecies_b,
                                   Nindividuals_b, K_c, Nindividuals_c, r_c,
                                   numspecies_c, minputchar_d, j, k):
    if hay_foodweb:
        rowNi = []
        for n in range(numspecies_c):
            coef_bij_matrix = c_devorados = r_eqsum = 0
            signo = signfunc(r_c[n])
            if (Nindividuals_c[k][n] > 0):
                for j in range_species_a:
                    coef_bij_matrix = Nindividuals_a[k][j] * minputchar_d[j][n]
                    r_eqsum += coef_bij_matrix

                for j in range_species_b:
                    coef_bij_matrix = Nindividuals_b[k][j] *\
                                      minputchar_d[j + numspecies_a][n]
                    r_eqsum += coef_bij_matrix

                rperiodequivalente = calc_r_periodo_vh(r_eqsum, invperiod)
                term_c = round(Nindividuals_c[k][n] *\
                               (1 - Nindividuals_c[k][n] / K_c[n]))
                if term_c > 1:
                    incPredatoria = np.random.binomial(
                        term_c, -math.expm1(-rperiodequivalente))

                else:
                    incPredatoria = 0
                incNmalth = np.random.binomial(
                    Nindividuals_c[k][n],
                    -math.expm1(-calc_r_periodo_vh(abs(r_c[n]), invperiod)))
                signo = signfunc(r_c[n])
                pop_c = Nindividuals_c[k][n] + incPredatoria + signo * incNmalth
                if (pop_c == 0):
                    sgcom.inform_user(ldev_inf, \
                            "Predator species %d extinction in day %d" % (n, k))
            else:
                pop_c = 0
            rowNi.append(pop_c)

        Nindividuals_c.append(rowNi)
Exemplo n.º 8
0
def predators_population_evolution(hay_foodweb, ldev_inf, numspecies_a, 
                                   Nindividuals_a, numspecies_b, Nindividuals_b,
                                   K_c, Nindividuals_c, r_c, numspecies_c,
                                   minputchar_d, j, k):
    if hay_foodweb:
        rowNi = []
        for n in range(numspecies_c):
            coef_bij_matrix = c_devorados = r_eqsum = 0
            signo = signfunc(r_c[n])
            if (Nindividuals_c[k][n] > 0):
                for j in range_species_a:
                    coef_bij_matrix = Nindividuals_a[k][j] * minputchar_d[j][n]
                    r_eqsum += coef_bij_matrix
                
                for j in range_species_b:
                    coef_bij_matrix = Nindividuals_b[k][j] *\
                                      minputchar_d[j + numspecies_a][n]
                    r_eqsum += coef_bij_matrix
                
                rperiodequivalente = calc_r_periodo_vh(r_eqsum, invperiod)
                term_c = round(Nindividuals_c[k][n] *\
                               (1 - Nindividuals_c[k][n] / K_c[n]))
                if term_c > 1:
                    incPredatoria = np.random.binomial(term_c, 
                                               -math.expm1(-rperiodequivalente))
                                               
                else:
                    incPredatoria = 0
                incNmalth = np.random.binomial(Nindividuals_c[k][n], 
                        -math.expm1(-calc_r_periodo_vh(abs(r_c[n]), invperiod)))
                signo = signfunc(r_c[n])
                pop_c = Nindividuals_c[k][n] + incPredatoria + signo * incNmalth
                if (pop_c == 0):
                    sgcom.inform_user(ldev_inf, \
                            "Predator species %d extinction in day %d" % (n, k))
            else:
                pop_c = 0
            rowNi.append(pop_c)
        
        Nindividuals_c.append(rowNi)
Exemplo n.º 9
0
def init_forced_external_pertubations(pl_ext, pol_ext, yearperiods,
                                      hayextplantas, hayextpolin, ldev_inf,
                                      lfich_inf):
    global forced_extinctions_in_course
    forced_extinctions_in_course = False
    if hayextplantas:
        inicioextplantas = pl_ext['start'] * sgGL.DAYS_YEAR
        nperpl = pl_ext['numperiod']
        periodoextpl = pl_ext['period']
        spikepl = round(periodoextpl * pl_ext['spike'])
        species_list_text = sgcom.create_list_species_affected(','.join(
            [str(i) for i in pl_ext['species']]))
        sgcom.inform_user(ldev_inf,
                          "Perturbations. Plants species %s, period (years): %0.2f, numperiods: %d, spike (fraction of period): %0.2f, rate: %.03f, start (year): %d"\
                          % (species_list_text, periodoextpl / sgGL.DAYS_YEAR,
                             nperpl, pl_ext['spike'], float(pl_ext['rate']),
                             pl_ext['start']))
    else:
        inicioextplantas = nperpl = periodoextpl = spikepl = 0
    if hayextpolin:
        inicioextpol = pol_ext['start'] * sgGL.DAYS_YEAR
        nperpol = pol_ext['numperiod']
        periodoextpol = pol_ext['period']
        spikepol = round(periodoextpol * pol_ext['spike'])
        species_list_text = sgcom.create_list_species_affected(','.join(
            [str(i) for i in pol_ext['species']]))
        sgcom.inform_user(ldev_inf,
                          "Perturbations. Pollinators species %s, period (years): %d, numperiods: %d, spike (fraction of period): %0.2f, rate: %.03f, start (year): %d"\
                          % (species_list_text, periodoextpol / sgGL.DAYS_YEAR,
                             nperpol, pol_ext['spike'], float(pol_ext['rate']),
                             pol_ext['start']))

    else:
        inicioextpol = nperpol = periodoextpol = spikepol = 0
    perturbation_conditions = sgcom.ExternalPerturbationConditions(
        nperpl, inicioextplantas, periodoextpl, spikepl, nperpol, inicioextpol,
        periodoextpol, spikepol)
    return (perturbation_conditions)
Exemplo n.º 10
0
def init_forced_external_pertubations(pl_ext, pol_ext, yearperiods,  
                                      hayextplantas, hayextpolin, 
                                      ldev_inf, lfich_inf):
    global forced_extinctions_in_course
    forced_extinctions_in_course = False
    if hayextplantas:
        inicioextplantas = pl_ext['start'] * sgGL.DAYS_YEAR
        nperpl = pl_ext['numperiod']
        periodoextpl = pl_ext['period']
        spikepl = round(periodoextpl * pl_ext['spike'])
        species_list_text = sgcom.create_list_species_affected(','.join([str(i) for i in pl_ext['species']] ))
        sgcom.inform_user(ldev_inf, 
                          "Perturbations. Plants species %s, period (years): %0.2f, numperiods: %d, spike (fraction of period): %0.2f, rate: %.03f, start (year): %d"\
                          % (species_list_text, periodoextpl / sgGL.DAYS_YEAR, 
                             nperpl, pl_ext['spike'], float(pl_ext['rate']), 
                             pl_ext['start']))
    else:
        inicioextplantas = nperpl = periodoextpl = spikepl = 0
    if hayextpolin:
        inicioextpol = pol_ext['start'] * sgGL.DAYS_YEAR
        nperpol = pol_ext['numperiod']
        periodoextpol = pol_ext['period']
        spikepol = round(periodoextpol * pol_ext['spike'])
        species_list_text = sgcom.create_list_species_affected(','.join([str(i) for i in pol_ext['species']] ))
        sgcom.inform_user(ldev_inf, 
                          "Perturbations. Pollinators species %s, period (years): %d, numperiods: %d, spike (fraction of period): %0.2f, rate: %.03f, start (year): %d"\
                          % (species_list_text, periodoextpol / sgGL.DAYS_YEAR, 
                             nperpol, pol_ext['spike'], float(pol_ext['rate']), 
                             pol_ext['start']))
        
    else:
        inicioextpol = nperpol = periodoextpol = spikepol = 0
    perturbation_conditions = sgcom.ExternalPerturbationConditions(nperpl, 
                                        inicioextplantas, periodoextpl, spikepl,
                                        nperpol, inicioextpol, periodoextpol,
                                        spikepol)
    return(perturbation_conditions)
Exemplo n.º 11
0
def predators_param_init(filename, hay_foodweb, direntrada, ldev_inf,
                         lfich_inf, dt):
    K_c = []
    Nindividuals_c = []
    rowNindividuals_c = []
    r_c = []
    r_cperiod = []
    minputchar_c = []
    minputchar_d = []
    numspecies_c = 0
    if hay_foodweb > 0:
        filename_c = filename + '_c.txt'
        filename_d = filename + '_d.txt'
        sgcom.inform_user(lfich_inf, "Predators matrix c: <a href='file:///" +\
                          dt + "/input/" + filename_c + "' target=_BLANK>" +\
                          filename_c + "<a>")
        sgcom.inform_user(lfich_inf, "Predators matrix d: <a href='file:///" +\
                          dt + "/input/" + filename_d + "' target=_BLANK>" +\
                          filename_d + "<a>")
        try:
            l_minputchar_c = sgcom.dlmreadlike(filename_c, direntrada)
            minputchar_c = np.array(l_minputchar_c, dtype=float)
            nrows_c = len(minputchar_c)
            ncols_c = len(minputchar_c[0])
            numspecies_c = ncols_c
        except:
            print("INPUT FILE BAD FORMAT")
        else:
            sgcom.inform_user(ldev_inf, "Predator species : %d" % numspecies_c)
            for n in range(numspecies_c):
                rowNindividuals_c.append(int(minputchar_c[nrows_c - 3][n]))
                K_c.append(int(minputchar_c[nrows_c - 2][n]))
                r_c.append(minputchar_c[nrows_c - 1][n])
                r_cperiod.append(
                    calc_r_periodo_vh(minputchar_c[nrows_c - 1][n], invperiod))
            Nindividuals_c.append(rowNindividuals_c)
            l_minputchar_d = sgcom.dlmreadlike(filename_d, direntrada)
            minputchar_d = np.array(l_minputchar_d, dtype=float)
            nrows_d = len(minputchar_d)
            ncols_d = len(minputchar_d[0])
            numspecies_d = ncols_d
    return Nindividuals_c, minputchar_c, numspecies_c, K_c, r_c, minputchar_d
Exemplo n.º 12
0
def predators_param_init(filename, hay_foodweb, direntrada, ldev_inf, lfich_inf,
                         dt):
    K_c = []
    Nindividuals_c = []
    rowNindividuals_c = []
    r_c = []
    r_cperiod = []
    minputchar_c = []; minputchar_d = []
    numspecies_c = 0
    if hay_foodweb > 0:
        filename_c = filename + '_c.txt'
        filename_d = filename + '_d.txt'
        sgcom.inform_user(lfich_inf, "Predators matrix c: <a href='file:///" +\
                          dt + "/input/" + filename_c + "' target=_BLANK>" +\
                          filename_c + "<a>")
        sgcom.inform_user(lfich_inf, "Predators matrix d: <a href='file:///" +\
                          dt + "/input/" + filename_d + "' target=_BLANK>" +\
                          filename_d + "<a>")
        try:
            l_minputchar_c = sgcom.dlmreadlike(filename_c, direntrada)
            minputchar_c = np.array(l_minputchar_c, dtype=float)
            nrows_c = len(minputchar_c)
            ncols_c = len(minputchar_c[0])
            numspecies_c = ncols_c
        except:
            print("INPUT FILE BAD FORMAT")
        else:
            sgcom.inform_user(ldev_inf, "Predator species : %d" % numspecies_c)
            for n in range(numspecies_c):
                rowNindividuals_c.append(int(minputchar_c[nrows_c - 3][n]))
                K_c.append(int(minputchar_c[nrows_c - 2][n]))
                r_c.append(minputchar_c[nrows_c - 1][n])
                r_cperiod.append(calc_r_periodo_vh(minputchar_c[nrows_c - 1][n], 
                                                   invperiod))
            Nindividuals_c.append(rowNindividuals_c)
            l_minputchar_d = sgcom.dlmreadlike(filename_d, direntrada)
            minputchar_d = np.array(l_minputchar_d, dtype=float)
            nrows_d = len(minputchar_d)
            ncols_d = len(minputchar_d[0])
            numspecies_d = ncols_d
    return Nindividuals_c, minputchar_c, numspecies_c, K_c, r_c, minputchar_d
Exemplo n.º 13
0
def food_render(simulation_params,
                sig_ret_val,
                displayinic,
                periods,
                verbose=True):
    global ax
    sgGL.ldev_inf, sgGL.lfich_inf = sgcom.open_info_channels(
        verbose, simulation_params.fichreport, 'a')

    matplotlib.rc('xtick', labelsize=8)
    matplotlib.rc('ytick', labelsize=8)
    factorescala = 1.2
    numspecies_a = len(sig_ret_val.Nindividuals_a[0])
    numspecies_b = len(sig_ret_val.Nindividuals_b[0])
    numspecies_c = len(sig_ret_val.Nindividuals_c[0])
    plt.figure('Mutualist network simulation. Input file: ' +\
               simulation_params.filename,
               dpi=resolucion, figsize=(ancho, alto))
    ax = plt.subplot(3, 1, 1)
    plt.title('Plants')
    plt.ylabel('Individuals')
    # plt.xlabel('Days')
    plt.grid(True)
    for i in range(numspecies_a):
        graf = []
        x = []
        for k in range(displayinic, periods):
            graf.append(sig_ret_val.Nindividuals_a[k][i])
            x.append(k)
        plt.plot(x,
                 graf,
                 color=cm.Set1(i / (numspecies_a)),
                 lw=calc_lw_width(numspecies_a))
    a = plt.gca()
    a.set_ylim([0, factorescala * sig_ret_val.maxminval.maxa_individuos])
    if numspecies_b < 11:
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
    ax = plt.subplot(3, 1, 2)
    plt.title('Pollinators')
    plt.ylabel('Individuals')
    # plt.xlabel('Days')
    plt.grid(True)
    for i in range(numspecies_b):
        graf = []
        x = []
        for k in range(displayinic, periods):
            graf.append(sig_ret_val.Nindividuals_b[k][i])
            x.append(k)
        plt.plot(x,
                 graf,
                 color=cm.Paired(i / (numspecies_b)),
                 lw=calc_lw_width(numspecies_b))
    a = plt.gca()
    a.set_ylim([0, factorescala * sig_ret_val.maxminval.maxb_individuos])
    if numspecies_b < 11:
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
    ax = plt.subplot(3, 1, 3)
    plt.title('Predators')
    plt.ylabel('Individuals')
    plt.xlabel('Years')
    plt.grid(True)
    lmaxc = max(sig_ret_val.Nindividuals_c)
    maxc_individuos = max(lmaxc)
    for i in range(numspecies_c):
        graf = []
        x = []
        for k in range(displayinic, periods):
            graf.append(sig_ret_val.Nindividuals_c[k][i])
            x.append(k)
        plt.plot(x,
                 graf,
                 color=cm.Paired(i / (numspecies_c)),
                 lw=calc_lw_width(numspecies_c))
    a = plt.gca()
    a.set_ylim([0, factorescala * maxc_individuos])
    if numspecies_c < 11:
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.9, box.height])
    nsal = 'output_pict_foodweb_' + simulation_params.filename + '_' +\
            simulation_params.algorithm + '_' + simulation_params.output_suff +\
           '_' + str(periods) + '.png'
    dt = simulation_params.dirtrabajo.replace('\\', '/')
    plt.savefig(str(dt + '/' + simulation_params.dirsal.replace('\\', '/') +
                    nsal),
                bbox_inches=0)
    plt.close()
    sgcom.inform_user(sgGL.lfich_inf,
                      "<P align=left><br>Foodweb effect picture<br>")
    sgcom.inform_user(sgGL.lfich_inf,\
                      "<IMG SRC=file:///%s ALIGN=LEFT  width=1200 BORDER=0>" %\
                      str(dt + '/' + simulation_params.dirsal.replace('\\', '/') + nsal))
    sgcom.inform_user(sgGL.lfich_inf, '<p>')
    sgcom.close_info_channels(sgGL.lfich_inf)
Exemplo n.º 14
0
def mutual_render(simulation_params,
                  sig_ret_val,
                  displayinic,
                  periods,
                  verbose=True):
    global ax
    #     if (len(sig_ret_val.pBssvar_species)):
    #         nrows = 3
    #     else:
    #         nrows = 2
    nrows = 3
    matplotlib.rc('xtick', labelsize=8)
    matplotlib.rc('ytick', labelsize=8)
    years = periods // sgGL.DAYS_YEAR
    sgGL.ldev_inf, sgGL.lfich_inf = sgcom.open_info_channels(
        verbose, simulation_params.fichreport, 'a')
    factorescala = 1.1
    numspecies_a = len(sig_ret_val.Nindividuals_a[0])
    numspecies_b = len(sig_ret_val.Nindividuals_b[0])
    plt.figure('Mutualist network simulation. Input file: ' +\
               simulation_params.filename, dpi=resolucion,
               figsize=(ancho, alto))
    ax = plt.subplot(nrows, 2, 1)
    pintasubplot(sig_ret_val.Nindividuals_a, 0,
                 sig_ret_val.maxminval.maxa_individuos, displayinic, periods,
                 factorescala, numspecies_a, 'Plants', 'Individuals')
    ax = plt.subplot(nrows, 2, 3)
    pintasubplot(sig_ret_val.ra_eff, sig_ret_val.maxminval.min_reff,
                 sig_ret_val.maxminval.max_reff, displayinic, periods,
                 factorescala, numspecies_a, '', 'Efficient growth rate')
    plt.xlabel('Years')
    #     if (len(sig_ret_val.pBssvar_species)):
    #         for i in range(numspecies_a):
    #             graf = [sig_ret_val.pBssvar_species[i][0]]
    #             x = [0]
    #             for k in range (0, years):
    #                 graf.append(sig_ret_val.pBssvar_species[i][k])
    #                 x.append(1 + k)
    #         ax = plt.subplot(nrows, 2, 5)
    #         listacoefs = np.array(sig_ret_val.pBssvar_species)
    #         listacoefs = np.c_[listacoefs[:,0],listacoefs]
    #         listacoefs = list(listacoefs.transpose())
    #         pintasubplot(listacoefs, 0, 1, displayinic, years, factorescala,
    #                      numspecies_a, '', 'Blossom variability coeffs.',
    #                      periodsinyears = True)
    #         plt.xlabel('Years')

    ax = plt.subplot(nrows, 2, 2)
    pintasubplot(sig_ret_val.Nindividuals_b, 0,
                 sig_ret_val.maxminval.maxb_individuos, displayinic, periods,
                 factorescala, numspecies_b, 'Polllinators', '')
    ax = plt.subplot(nrows, 2, 4)
    pintasubplot(sig_ret_val.rb_eff, sig_ret_val.maxminval.min_reff,
                 sig_ret_val.maxminval.max_reff, displayinic, periods,
                 factorescala, numspecies_b, '', '')
    plt.xlabel('Years')

    #   Network Growth Power

    ax = plt.subplot(nrows, 2, 5)
    pintasubplot(sig_ret_val.network_growth_power,
                 min(sig_ret_val.network_growth_power),
                 max(sig_ret_val.network_growth_power),
                 displayinic,
                 periods,
                 factorescala,
                 1,
                 '',
                 'Network Growth Power',
                 displaylegend=False)

    dt = simulation_params.dirtrabajo.replace('\\', '/')
    nsal = 'output_pict_plantsandpols_' + simulation_params.filename +\
           '_' + simulation_params.algorithm + '_' + simulation_params.output_suff +\
           '_' + str(years) + '.png'
    plt.savefig(str(dt + '/' + simulation_params.dirsal.replace('\\', '/') +
                    nsal),
                bbox_inches=0)
    sgcom.inform_user(sgGL.lfich_inf,
                      "<p align=left>Populations evolution picture")
    sgcom.inform_user(sgGL.lfich_inf, \
                      "<IMG SRC=file:///%s ALIGN=LEFT  width=1200 BORDER=0>" %\
                      str(dt + '/' + simulation_params.dirsal.replace('\\', '/') + nsal))
    sgcom.inform_user(sgGL.lfich_inf, '</p><br>')
    sgcom.close_info_channels(sgGL.lfich_inf)
    plt.close()
Exemplo n.º 15
0
def bino_mutual(sim_cond=''):
    global cuentaperpl, cuentaperpol
    global Logistic_abs
    global model_r_alpha
    global pendiente, blossomperiod, sd, periodo
    global count_collapse_years
    global forced_extinctions_in_course
    global init_collapse_years
    global range_species_a, range_species_b

    sgGL.ldev_inf, sgGL.lfich_inf, periods, systemextinction,\
    May, haymut, model_r_alpha, count_collapse_years, init_collapse_years = \
       init_simulation_environment(sim_cond.year_periods, sim_cond.fichreport,
                                   sim_cond.algorithm, sim_cond.verbose)
    tinic = time()
    sgcom.start_report(sgGL.ldev_inf, sim_cond.filename, sim_cond.com,
                       sim_cond.year_periods, sim_cond.algorithm,
                       sim_cond.release, sim_cond.hay_foodweb)
    numspecies_a, minputchar_a, nrows_a, ncols_a = \
                                sgcom.read_simulation_matrix(sim_cond.filename,
                                                           sim_cond.dirtrabajo,
                                                           sim_cond.direntrada,
                                                           '_a.txt',
                                                           'Plants',
                                                           sim_cond.N0plants,
                                                           lfich_inf = sgGL.lfich_inf)
    rowNindividuals_a, Alpha_a, cAlpha_a, r_a, rd_a, Nindividuals_a,\
    ra_eff, ra_equs, r_tot_eqsum_a = init_lists_pop(periods, numspecies_a, minputchar_a)
    lcompatibplantas = init_blossom_perturbation_lists(
        sim_cond.plants_blossom_prob, sim_cond.blossom_pert_list, numspecies_a)
    range_periods = range(periods - 1)
    range_species_a = range(numspecies_a)
    numspecies_b, minputchar_b, nrows_b, ncols_b = \
                        sgcom.read_simulation_matrix(sim_cond.filename,
                                               sim_cond.dirtrabajo,
                                               sim_cond.direntrada,
                                               '_b.txt', 'Pollinators ',
                                               sim_cond.N0pols,
                                               lfich_inf = sgGL.lfich_inf)
    rowNindividuals_b, Alpha_b, cAlpha_b, r_b,\
    rd_b, Nindividuals_b, rb_eff, rb_equs, r_tot_eqsum_b = init_lists_pop(periods, numspecies_b,
                                                           minputchar_b)
    range_species_b = range(numspecies_b)
    add_report_simulation_conditions(sim_cond.plants_blossom_prob,
                                     sim_cond.plants_blossom_sd,
                                     sim_cond.plants_blossom_type,
                                     sim_cond.blossom_pert_list, sgGL.ldev_inf,
                                     numspecies_a, rowNindividuals_a,
                                     numspecies_b, rowNindividuals_b)
    network_growth_power = np.zeros(periods, dtype=float)
    mut_brake_a = Alpha_a
    mut_brake_b = Alpha_b
    # Random links removal
    periodoborr = init_random_links_removal(sim_cond.eliminarenlaces, periods,
                                            sgGL.ldev_inf, minputchar_a)
    # Extinction analysis. Forced death rate increases
    #     inicioextplantas, inicioextpol, hayextplantas, hayextpolin, j =\
    hayextplantas, hayextpolin, inner_pl_ext, inner_pol_ext, j = init_external_perturbation_lists(
        sim_cond.pl_ext, sim_cond.pol_ext, numspecies_a, numspecies_b)
    pert_cond = init_forced_external_pertubations(
        sim_cond.pl_ext, sim_cond.pol_ext, sim_cond.year_periods,
        hayextplantas, hayextpolin, sgGL.ldev_inf, sgGL.lfich_inf)
    # Extinction analysis. Blossom pertubations

    bloss_species, hay_bssvar, pBssvar_species = \
          init_blossom_perturbations_conditions(sim_cond.year_periods,
                                sim_cond.blossom_pert_list,
                                sim_cond.Bssvar_data,
                                sgGL.ldev_inf,
                                numspecies_a)
    Nindividuals_c, minputchar_c, numspecies_c, K_c, r_c, minputchar_d = \
                                      predators_param_init(sim_cond.filename,
                                                           sim_cond.hay_foodweb,
                                                           sim_cond.direntrada,
                                                           sgGL.ldev_inf,
                                                           sgGL.lfich_inf,
                                             sim_cond.dirtrabajo.replace('\\', '/'))

    for k in range_periods:
        ''' The compatibilty matrixes masks are created when the year starts '''
        if not (k %
                sgGL.DAYS_YEAR):  # Much faster than if ((k%sgGL.DAYS_YEAR)==0)
            if (not (systemextinction)):
                systemextinction = check_system_extinction(
                    sim_cond.algorithm, k, lcompatibplantas,
                    sim_cond.plants_blossom_prob, ra_equs, rb_equs, ra_eff,
                    rb_eff)
                forced_extinctions_in_course = False
                if systemextinction:
                    sgcom.inform_user(sgGL.ldev_inf,\
                         "ALARM !!!. System will collapse. Day %d (year %d). NGP %0.3f" %\
                         (k, k // sgGL.DAYS_YEAR,network_growth_power[k]))
                    if sim_cond.exit_on_extinction:
                        sim_ret_val = sgcom.SimulationReturnValues(
                            Nindividuals_a, Nindividuals_b, Nindividuals_c,
                            ra_eff, rb_eff, ra_equs, rb_equs, [],
                            systemextinction, pBssvar_species,
                            network_growth_power)
                        return (sim_ret_val)
            minputchar_a_mask, minputchar_b_mask, lcompatibplantas =\
                      calc_random_blossom_effect(numspecies_a, nrows_a, ncols_a,
                            nrows_b, ncols_b, numspecies_b,
                            sim_cond,
                            blossom_pert_list=bloss_species[:])
            minpeq_a, minpeq_b = calc_perturbed_coeffs(
                k, hay_bssvar, pBssvar_species, minputchar_a,
                minputchar_a_mask, numspecies_a, minputchar_b,
                minputchar_b_mask, numspecies_b)
        # Eliminacion aleatoria de enlaces
        if (sim_cond.eliminarenlaces > 0) & (k > 0) & (k % periodoborr == 0):
            minpeq_a, minpeq_b , minputchar_a, minputchar_b = \
                                          deletion_links_effect(k, periodoborr,
                                          minputchar_a, minputchar_b,
                                          minputchar_a_mask, minputchar_b_mask,
                                          sgGL.ldev_inf)
        if haymut:
            r_tot_eqsum_a = np.dot(np.transpose(minpeq_a[0:numspecies_b, :]),\
                         Nindividuals_b[k, :])
            r_tot_eqsum_b = np.dot(np.transpose(minpeq_b[0:numspecies_a, :]),\
                         Nindividuals_a[k, :])
            mut_brake_a = Alpha_a + cAlpha_a * r_tot_eqsum_a
            mut_brake_b = Alpha_b + cAlpha_b * r_tot_eqsum_b
        brake_a = mut_brake_a * np.transpose(Nindividuals_a[k, ])
        brake_b = mut_brake_b * np.transpose(Nindividuals_b[k, ])
        #         pepars = [PopEvoPars(n, "Plant",
        #                                numspecies_a, sim_cond.algorithm,
        #                                sim_cond.hay_foodweb, inner_pl_ext,
        #                                May, haymut, ra_eff, ra_equs,
        #                                minpeq_a, j, cAlpha_a, Alpha_a, r_a, rd_a,
        #                                Nindividuals_a, numspecies_b, Nindividuals_b,
        #                                Nindividuals_c, minputchar_c, numspecies_c,
        #                                pert_cond.inicioextplantas, hayextplantas,
        #                                pert_cond.nperpl, pert_cond.periodoextpl,
        #                                pert_cond.spikepl, k, model_r_alpha, r_tot_eqsum_a[n],
        #                                sgGL.ldev_inf) for n in range_species_a if Nindividuals_a[k,n]>0]
        #         with Pool(3) as p:
        #             (p.map(populations_evolution_parallel, pepars))
        #       list(map(populations_evolution_parallel, pepars))
        #[populations_evolution_parallel(x) for x in pepars]
        [
            populations_evolution(
                n,
                numspecies_a,  #sim_cond.algorithm, 
                sim_cond.hay_foodweb,
                inner_pl_ext,
                #May,
                haymut,
                ra_eff,
                ra_equs,
                minpeq_a,
                j,  #cAlpha_a, Alpha_a, 
                r_a,
                rd_a,
                Nindividuals_a,
                numspecies_b,
                Nindividuals_b,
                Nindividuals_c,
                minputchar_c,
                numspecies_c,
                pert_cond.inicioextplantas,
                hayextplantas,
                pert_cond.nperpl,
                pert_cond.periodoextpl,
                pert_cond.spikepl,
                k,
                model_r_alpha,
                r_tot_eqsum_a[n],
                brake_a[n],
                sgGL.ldev_inf,
                isplant=True) for n in range_species_a
            if Nindividuals_a[k, n] > 0
        ]
        [
            populations_evolution(
                n,
                numspecies_b,  #sim_cond.algorithm, 
                sim_cond.hay_foodweb,
                inner_pol_ext,
                #May,
                haymut,
                rb_eff,
                rb_equs,
                minpeq_b,
                j,  #cAlpha_b, Alpha_b, 
                r_b,
                rd_b,
                Nindividuals_b,
                numspecies_a,
                Nindividuals_a,
                Nindividuals_c,
                minputchar_c,
                numspecies_c,
                pert_cond.inicioextpol,
                hayextpolin,
                pert_cond.nperpol,
                pert_cond.periodoextpol,
                pert_cond.spikepol,
                k,
                model_r_alpha,
                r_tot_eqsum_b[n],
                brake_b[n],
                sgGL.ldev_inf,
                isplant=False) for n in range_species_b
            if Nindividuals_b[k, n] > 0
        ]
        if (np.sum(Nindividuals_a[k, ]) + np.sum(Nindividuals_b[k, ])) > 0:
            network_growth_power[k+1] = np.average(list(np.extract(Nindividuals_a[k,]>0,ra_equs[k+1,]))+\
                     list(np.extract(Nindividuals_b[k,]>0,rb_equs[k+1,])))
        else:
            network_growth_power[k + 1:] = network_growth_power[k]
        if (sim_cond.hay_foodweb):
            predators_population_evolution(sim_cond.hay_foodweb, sgGL.ldev_inf,
                                           numspecies_a, Nindividuals_a,
                                           numspecies_b, Nindividuals_b, K_c,
                                           Nindividuals_c, r_c, numspecies_c,
                                           minputchar_d, j, k)
    ra_eff[0, ] = ra_eff[1, ]
    rb_eff[0, ] = rb_eff[1, ]
    network_growth_power[0] = network_growth_power[1]
    network_growth_power = np.transpose(network_growth_power)
    maxminval = sgcom.find_max_values(Nindividuals_a, Nindividuals_b, ra_eff,
                                      rb_eff, ra_equs, rb_equs)
    tfin = time()
    sgcom.end_report(sgGL.ldev_inf, sgGL.lfich_inf, sim_cond, tfin, tinic,
                     periods, Nindividuals_a, ra_eff, ra_equs, Nindividuals_b,
                     rb_eff, rb_equs, network_growth_power, Nindividuals_c)
    sim_ret_val = sgcom.SimulationReturnValues(Nindividuals_a, Nindividuals_b,
                                               Nindividuals_c, ra_eff, rb_eff,
                                               ra_equs, rb_equs, maxminval,
                                               systemextinction,
                                               pBssvar_species,
                                               network_growth_power)
    return (sim_ret_val)
Exemplo n.º 16
0
def add_report_simulation_conditions(plants_blossom_prob, plants_blossom_sd,
                                     plants_blossom_type, blossom_pert_list,
                                     ldev_inf, numspecies_a, rowNindividuals_a,
                                     numspecies_b, rowNindividuals_b):
    sgcom.inform_user(ldev_inf, "Plant species: %d" % numspecies_a)
    sgcom.inform_user(ldev_inf, "Plant initial populations %s" %\
                      rowNindividuals_a)
    sgcom.inform_user(ldev_inf, "Pollinator species: %d" % numspecies_b)
    sgcom.inform_user(ldev_inf,
                      "Pollinator initial populations %s" % rowNindividuals_b)
    if (plants_blossom_type == 'Binary'):
        sgcom.inform_user(ldev_inf,
                "Blossom probability %s, type %s. Plant affected species:%s" %\
            (plants_blossom_prob, plants_blossom_type, str(blossom_pert_list)))
    else:
        sgcom.inform_user(ldev_inf,
                "Blossom probability, type %s, mean %s, standard dev. %s. Plant affected species:%s" %\
                (plants_blossom_type, plants_blossom_prob, plants_blossom_sd,
                 str(blossom_pert_list)))
Exemplo n.º 17
0
def populations_evolution(n, numspecies_p, #algorithm, 
                          hay_foodweb, 
                          p_ext, #May, 
                          haymut, rp_eff, rp_eq, 
                          minputchar_p, j, #cAlpha_p, Alpha_p, 
                          r_p, rd_p, 
                          Nindividuals_p, numspecies_q, Nindividuals_q, 
                          Nindividuals_c, minputchar_c, numspecies_c, inicioext,
                          hayext, nper, periodoext, spike, k, model_r_a, r_tot_eqsum_n,
                          brake_p_n, ldev_inf, isplant = True):
    global cuentaperpl, cuentaperpol
    
    
    p_devorados =  0
    r_muerte = rd_p[n]
    # Function is only executed if Nindividuals_p[k, n]>0
    if hayext:
        if (isplant) & (cuentaperpl < nper):
            r_muerte, cuentaperpl = perturbation(p_ext, n, rd_p[n],
                                               cuentaperpl, inicioext,
                                               periodoext, spike, k)
        elif not(isplant) & (cuentaperpol < nper):
            r_muerte, cuentaperpol = perturbation(p_ext, n, rd_p[n],
                                               cuentaperpol, inicioext,
                                               periodoext, spike, k)

#         CODIGO OBSOLETO, May eliminado
#
#         elif (May):
#             for j in range(numspecies_q):
#                 r_eqsum, term_May, rMay = calc_mutualism_params(minputchar_p,
#                                     Alpha_p, Nindividuals_p, Nindividuals_q,
#                                     r_eqsum, term_May, rMay, k, j, n, r_p,
#                                     r_muerte)
    rtot_p = r_p[n] + r_tot_eqsum_n - r_muerte        
    # Predators effect
    if hay_foodweb:
        p_devorados, j, rceff = predators_effect(p_devorados, j, 
                                                 Nindividuals_p, 
                                                 Nindividuals_c, 
                                                 minputchar_c, 
                                                 numspecies_c, n, k)
    # New algorithm

    # ciclo_verhulst Inline code following Vwn Rossum's advice
    #rcal = rtot_p - ( Alpha_p[n] + cAlpha_p[n] * r_tot_eqsum_n) * Nindividuals_p[k, n]
    #rcal = rtot_p - mut_brake_p_n* Nindividuals_p[k, n]
    rcal = rtot_p - brake_p_n 
    #rcal = 0
    inc_pop = Nindividuals_p[k, n]
    absrcal = abs(rcal)
    rcalpos = (absrcal == rcal)
    # IF rcal is tiny, what happens when populations are stable return
    # zero. Approximation to speed up algorithm
    #if absrcal*Nindividuals_p[k, n]>sgGL.IGNORE_REFF:
    rspneq = math.pow(1 + absrcal, invperiod ) - 1
    incNmalth = np.random.binomial(Nindividuals_p[k, n], -math.expm1(-rspneq))
    if rcalpos:
        inc_pop += incNmalth 
    else:
        inc_pop -= incNmalth        
    pop_p = inc_pop - p_devorados
#         Codigo obsoleto que contemplaba los modelos viejos 
#             
#         elif not (May):
#             retl = ciclo_new_model(rtot_p, Nindividuals_p[k, n],
#                                    1 / Alpha_p[n], Logistic_abs)
#         else:
#             retl = ciclo_May(r_p[n] - r_muerte, rMay, term_May,
#                              Nindividuals_p[k, n], Alpha_p[n])
        # Species extinction                                         
    if not(pop_p):
        if isplant:
            strtype = "Plant"
        else:
            strtype = "Pollinator"
        sgcom.inform_user(ldev_inf,
                         "Day %d (year %d). %s species %d extincted" %\
                         (k, k // sgGL.DAYS_YEAR, strtype, 
                           int_to_ext_rep(n)))
        rp_eff[k + 1:, n], rp_eq[k + 1:, n] = rp_eff[k, n], rp_eq[k, n]
        return
    Nindividuals_p[k + 1, n] = pop_p
    rp_eff[k + 1, n], rp_eq[k + 1, n] = rcal, rtot_p
Exemplo n.º 18
0
def add_report_simulation_conditions(plants_blossom_prob, plants_blossom_sd, 
                                     plants_blossom_type, blossom_pert_list,
                                     ldev_inf, numspecies_a, rowNindividuals_a,
                                     numspecies_b, rowNindividuals_b):
    sgcom.inform_user(ldev_inf, "Plant species: %d" % numspecies_a)
    sgcom.inform_user(ldev_inf, "Plant initial populations %s" %\
                      rowNindividuals_a)
    sgcom.inform_user(ldev_inf, "Pollinator species: %d" % numspecies_b)
    sgcom.inform_user(ldev_inf, 
                      "Pollinator initial populations %s" % rowNindividuals_b)
    if (plants_blossom_type == 'Binary'):
        sgcom.inform_user(ldev_inf,
                "Blossom probability %s, type %s. Plant affected species:%s" %\
            (plants_blossom_prob, plants_blossom_type, str(blossom_pert_list)))
    else:
        sgcom.inform_user(ldev_inf, 
                "Blossom probability, type %s, mean %s, standard dev. %s. Plant affected species:%s" %\
                (plants_blossom_type, plants_blossom_prob, plants_blossom_sd, 
                 str(blossom_pert_list)))
Exemplo n.º 19
0
def populations_evolution(
        n,
        numspecies_p,  #algorithm, 
        hay_foodweb,
        p_ext,  #May, 
        haymut,
        rp_eff,
        rp_eq,
        minputchar_p,
        j,  #cAlpha_p, Alpha_p, 
        r_p,
        rd_p,
        Nindividuals_p,
        numspecies_q,
        Nindividuals_q,
        Nindividuals_c,
        minputchar_c,
        numspecies_c,
        inicioext,
        hayext,
        nper,
        periodoext,
        spike,
        k,
        model_r_a,
        r_tot_eqsum_n,
        brake_p_n,
        ldev_inf,
        isplant=True):
    global cuentaperpl, cuentaperpol

    p_devorados = 0
    r_muerte = rd_p[n]
    # Function is only executed if Nindividuals_p[k, n]>0
    if hayext:
        if (isplant) & (cuentaperpl < nper):
            r_muerte, cuentaperpl = perturbation(p_ext, n, rd_p[n],
                                                 cuentaperpl, inicioext,
                                                 periodoext, spike, k)
        elif not (isplant) & (cuentaperpol < nper):
            r_muerte, cuentaperpol = perturbation(p_ext, n, rd_p[n],
                                                  cuentaperpol, inicioext,
                                                  periodoext, spike, k)


#         CODIGO OBSOLETO, May eliminado
#
#         elif (May):
#             for j in range(numspecies_q):
#                 r_eqsum, term_May, rMay = calc_mutualism_params(minputchar_p,
#                                     Alpha_p, Nindividuals_p, Nindividuals_q,
#                                     r_eqsum, term_May, rMay, k, j, n, r_p,
#                                     r_muerte)
    rtot_p = r_p[n] + r_tot_eqsum_n - r_muerte
    # Predators effect
    if hay_foodweb:
        p_devorados, j, rceff = predators_effect(p_devorados, j,
                                                 Nindividuals_p,
                                                 Nindividuals_c, minputchar_c,
                                                 numspecies_c, n, k)
    # New algorithm

    # ciclo_verhulst Inline code following Vwn Rossum's advice
    #rcal = rtot_p - ( Alpha_p[n] + cAlpha_p[n] * r_tot_eqsum_n) * Nindividuals_p[k, n]
    #rcal = rtot_p - mut_brake_p_n* Nindividuals_p[k, n]
    rcal = rtot_p - brake_p_n
    #rcal = 0
    inc_pop = Nindividuals_p[k, n]
    absrcal = abs(rcal)
    rcalpos = (absrcal == rcal)
    # IF rcal is tiny, what happens when populations are stable return
    # zero. Approximation to speed up algorithm
    #if absrcal*Nindividuals_p[k, n]>sgGL.IGNORE_REFF:
    rspneq = math.pow(1 + absrcal, invperiod) - 1
    incNmalth = np.random.binomial(Nindividuals_p[k, n], -math.expm1(-rspneq))
    if rcalpos:
        inc_pop += incNmalth
    else:
        inc_pop -= incNmalth
    pop_p = inc_pop - p_devorados
    #         Codigo obsoleto que contemplaba los modelos viejos
    #
    #         elif not (May):
    #             retl = ciclo_new_model(rtot_p, Nindividuals_p[k, n],
    #                                    1 / Alpha_p[n], Logistic_abs)
    #         else:
    #             retl = ciclo_May(r_p[n] - r_muerte, rMay, term_May,
    #                              Nindividuals_p[k, n], Alpha_p[n])
    # Species extinction
    if not (pop_p):
        if isplant:
            strtype = "Plant"
        else:
            strtype = "Pollinator"
        sgcom.inform_user(ldev_inf,
                         "Day %d (year %d). %s species %d extincted" %\
                         (k, k // sgGL.DAYS_YEAR, strtype,
                           int_to_ext_rep(n)))
        rp_eff[k + 1:, n], rp_eq[k + 1:, n] = rp_eff[k, n], rp_eq[k, n]
        return
    Nindividuals_p[k + 1, n] = pop_p
    rp_eff[k + 1, n], rp_eq[k + 1, n] = rcal, rtot_p
Exemplo n.º 20
0
def bino_mutual(sim_cond = ''):
    global cuentaperpl, cuentaperpol
    global Logistic_abs
    global model_r_alpha
    global pendiente, blossomperiod, sd, periodo
    global count_collapse_years
    global forced_extinctions_in_course
    global init_collapse_years
    global range_species_a, range_species_b
    
    sgGL.ldev_inf, sgGL.lfich_inf, periods, systemextinction,\
    May, haymut, model_r_alpha, count_collapse_years, init_collapse_years = \
       init_simulation_environment(sim_cond.year_periods, sim_cond.fichreport, 
                                   sim_cond.algorithm, sim_cond.verbose)    
    tinic = time()
    sgcom.start_report(sgGL.ldev_inf, sim_cond.filename, sim_cond.com, 
                       sim_cond.year_periods, sim_cond.algorithm, 
                       sim_cond.release, sim_cond.hay_foodweb)        
    numspecies_a, minputchar_a, nrows_a, ncols_a = \
                                sgcom.read_simulation_matrix(sim_cond.filename, 
                                                           sim_cond.dirtrabajo,
                                                           sim_cond.direntrada, 
                                                           '_a.txt',
                                                           'Plants', 
                                                           sim_cond.N0plants, 
                                                           lfich_inf = sgGL.lfich_inf)
    rowNindividuals_a, Alpha_a, cAlpha_a, r_a, rd_a, Nindividuals_a,\
    ra_eff, ra_equs, r_tot_eqsum_a = init_lists_pop(periods, numspecies_a, minputchar_a)
    lcompatibplantas = init_blossom_perturbation_lists(sim_cond.plants_blossom_prob,
                                                       sim_cond.blossom_pert_list,
                                                       numspecies_a)
    range_periods = range(periods-1)
    range_species_a = range(numspecies_a)
    numspecies_b, minputchar_b, nrows_b, ncols_b = \
                        sgcom.read_simulation_matrix(sim_cond.filename, 
                                               sim_cond.dirtrabajo, 
                                               sim_cond.direntrada,
                                               '_b.txt', 'Pollinators ',
                                               sim_cond.N0pols, 
                                               lfich_inf = sgGL.lfich_inf)
    rowNindividuals_b, Alpha_b, cAlpha_b, r_b,\
    rd_b, Nindividuals_b, rb_eff, rb_equs, r_tot_eqsum_b = init_lists_pop(periods, numspecies_b,
                                                           minputchar_b)
    range_species_b = range(numspecies_b)
    add_report_simulation_conditions(sim_cond.plants_blossom_prob, 
                                     sim_cond.plants_blossom_sd,
                                     sim_cond.plants_blossom_type, 
                                     sim_cond.blossom_pert_list,
                                     sgGL.ldev_inf, numspecies_a,
                                     rowNindividuals_a, numspecies_b,
                                     rowNindividuals_b)
    network_growth_power = np.zeros(periods, dtype=float)
    mut_brake_a = Alpha_a
    mut_brake_b = Alpha_b
    # Random links removal 
    periodoborr = init_random_links_removal(sim_cond.eliminarenlaces, periods, 
                                            sgGL.ldev_inf, minputchar_a)            
    # Extinction analysis. Forced death rate increases
#     inicioextplantas, inicioextpol, hayextplantas, hayextpolin, j =\
    hayextplantas, hayextpolin, inner_pl_ext, inner_pol_ext, j =init_external_perturbation_lists(
                                                     sim_cond.pl_ext, 
                                                     sim_cond.pol_ext,
                                                     numspecies_a, numspecies_b)     
    pert_cond = init_forced_external_pertubations(sim_cond.pl_ext,
                                    sim_cond.pol_ext, sim_cond.year_periods, 
                                    hayextplantas, hayextpolin,
                                    sgGL.ldev_inf, sgGL.lfich_inf)
    # Extinction analysis. Blossom pertubations   

    bloss_species, hay_bssvar, pBssvar_species = \
          init_blossom_perturbations_conditions(sim_cond.year_periods, 
                                sim_cond.blossom_pert_list,
                                sim_cond.Bssvar_data, 
                                sgGL.ldev_inf,
                                numspecies_a)
    Nindividuals_c, minputchar_c, numspecies_c, K_c, r_c, minputchar_d = \
                                      predators_param_init(sim_cond.filename, 
                                                           sim_cond.hay_foodweb,
                                                           sim_cond.direntrada, 
                                                           sgGL.ldev_inf,
                                                           sgGL.lfich_inf,
                                             sim_cond.dirtrabajo.replace('\\', '/'))

    for k in range_periods:
        ''' The compatibilty matrixes masks are created when the year starts '''         
        if not(k % sgGL.DAYS_YEAR):  # Much faster than if ((k%sgGL.DAYS_YEAR)==0)     
            if (not(systemextinction)):
                systemextinction = check_system_extinction(sim_cond.algorithm, k, 
                                          lcompatibplantas, 
                                          sim_cond.plants_blossom_prob,
                                           ra_equs, rb_equs, ra_eff, rb_eff)
                forced_extinctions_in_course = False
                if systemextinction:
                    sgcom.inform_user(sgGL.ldev_inf,\
                         "ALARM !!!. System will collapse. Day %d (year %d). NGP %0.3f" %\
                         (k, k // sgGL.DAYS_YEAR,network_growth_power[k]))
                    if sim_cond.exit_on_extinction:
                        sim_ret_val = sgcom.SimulationReturnValues(
                                              Nindividuals_a, Nindividuals_b, 
                                              Nindividuals_c, ra_eff, rb_eff, 
                                              ra_equs, rb_equs, 
                                              [], 
                                              systemextinction, pBssvar_species,
                                              network_growth_power)
                        return(sim_ret_val)
            minputchar_a_mask, minputchar_b_mask, lcompatibplantas =\
                      calc_random_blossom_effect(numspecies_a, nrows_a, ncols_a,
                            nrows_b, ncols_b, numspecies_b, 
                            sim_cond,
                            blossom_pert_list=bloss_species[:])
            minpeq_a, minpeq_b = calc_perturbed_coeffs(k, hay_bssvar, 
                                                  pBssvar_species, minputchar_a,
                                                  minputchar_a_mask,
                                                  numspecies_a, minputchar_b,
                                                  minputchar_b_mask, 
                                                  numspecies_b)
        # Eliminacion aleatoria de enlaces
        if (sim_cond.eliminarenlaces > 0) & (k > 0) & (k % periodoborr == 0):
            minpeq_a, minpeq_b , minputchar_a, minputchar_b = \
                                          deletion_links_effect(k, periodoborr,
                                          minputchar_a, minputchar_b,
                                          minputchar_a_mask, minputchar_b_mask,
                                          sgGL.ldev_inf)
        if haymut:
            r_tot_eqsum_a = np.dot(np.transpose(minpeq_a[0:numspecies_b, :]),\
                         Nindividuals_b[k, :]) 
            r_tot_eqsum_b = np.dot(np.transpose(minpeq_b[0:numspecies_a, :]),\
                         Nindividuals_a[k, :])
            mut_brake_a = Alpha_a + cAlpha_a * r_tot_eqsum_a
            mut_brake_b = Alpha_b + cAlpha_b * r_tot_eqsum_b
        brake_a = mut_brake_a * np.transpose(Nindividuals_a[k,])
        brake_b = mut_brake_b * np.transpose(Nindividuals_b[k,])
#         pepars = [PopEvoPars(n, "Plant", 
#                                numspecies_a, sim_cond.algorithm, 
#                                sim_cond.hay_foodweb, inner_pl_ext, 
#                                May, haymut, ra_eff, ra_equs, 
#                                minpeq_a, j, cAlpha_a, Alpha_a, r_a, rd_a, 
#                                Nindividuals_a, numspecies_b, Nindividuals_b, 
#                                Nindividuals_c, minputchar_c, numspecies_c, 
#                                pert_cond.inicioextplantas, hayextplantas, 
#                                pert_cond.nperpl, pert_cond.periodoextpl, 
#                                pert_cond.spikepl, k, model_r_alpha, r_tot_eqsum_a[n],
#                                sgGL.ldev_inf) for n in range_species_a if Nindividuals_a[k,n]>0]
#         with Pool(3) as p:
#             (p.map(populations_evolution_parallel, pepars))
#       list(map(populations_evolution_parallel, pepars))
        #[populations_evolution_parallel(x) for x in pepars]
        [populations_evolution(n, numspecies_a, #sim_cond.algorithm, 
                                sim_cond.hay_foodweb, inner_pl_ext, 
                                #May, 
                                haymut, ra_eff, ra_equs, 
                                minpeq_a, j, #cAlpha_a, Alpha_a, 
                                r_a, rd_a, 
                                Nindividuals_a, numspecies_b, Nindividuals_b, 
                                Nindividuals_c, minputchar_c, numspecies_c, 
                                pert_cond.inicioextplantas, hayextplantas, 
                                pert_cond.nperpl, pert_cond.periodoextpl, 
                                pert_cond.spikepl, k, model_r_alpha, 
                                r_tot_eqsum_a[n], brake_a[n],
                                sgGL.ldev_inf, isplant = True) 
                                for n in range_species_a if Nindividuals_a[k,n]>0]
        [populations_evolution(n, numspecies_b, #sim_cond.algorithm, 
                               sim_cond.hay_foodweb, inner_pol_ext, 
                               #May, 
                               haymut, rb_eff, rb_equs,
                               minpeq_b, j, #cAlpha_b, Alpha_b, 
                               r_b, rd_b, 
                               Nindividuals_b, numspecies_a, Nindividuals_a,
                               Nindividuals_c, minputchar_c, numspecies_c,
                               pert_cond.inicioextpol, hayextpolin, pert_cond.nperpol, 
                               pert_cond.periodoextpol, pert_cond.spikepol, k, 
                               model_r_alpha, r_tot_eqsum_b[n], brake_b[n],
                               sgGL.ldev_inf, isplant = False) 
                               for n in range_species_b if Nindividuals_b[k,n]>0 ]
        if ( np.sum(Nindividuals_a[k,]) + np.sum(Nindividuals_b[k,]) ) > 0:
            network_growth_power[k+1] = np.average(list(np.extract(Nindividuals_a[k,]>0,ra_equs[k+1,]))+\
                     list(np.extract(Nindividuals_b[k,]>0,rb_equs[k+1,])))
        else:
            network_growth_power[k+1:] = network_growth_power[k]
        if (sim_cond.hay_foodweb):
            predators_population_evolution(sim_cond.hay_foodweb, 
                                       sgGL.ldev_inf, numspecies_a,
                                       Nindividuals_a, numspecies_b, 
                                       Nindividuals_b, K_c, Nindividuals_c, r_c,
                                       numspecies_c, minputchar_d, j, k)
    ra_eff[0, ] = ra_eff[1, ]
    rb_eff[0, ] = rb_eff[1, ]
    network_growth_power[0] = network_growth_power[1]
    network_growth_power = np.transpose(network_growth_power)
    maxminval = sgcom.find_max_values(Nindividuals_a, Nindividuals_b, 
                                           ra_eff, rb_eff, ra_equs, rb_equs)    
    tfin = time()
    sgcom.end_report(sgGL.ldev_inf, sgGL.lfich_inf, sim_cond, tfin, tinic, 
                     periods, Nindividuals_a, ra_eff, ra_equs, Nindividuals_b, 
                     rb_eff, rb_equs, network_growth_power, Nindividuals_c)
    sim_ret_val = sgcom.SimulationReturnValues(Nindividuals_a, Nindividuals_b, 
                                               Nindividuals_c, ra_eff, rb_eff, 
                                               ra_equs, rb_equs, maxminval, 
                                               systemextinction, 
                                               pBssvar_species, network_growth_power)
    return(sim_ret_val)