Exemplo n.º 1
0
def get_polarization_stuff(st, env):

    Ztrace = st.select(component="Z")[0]
    Ntrace = st.select(component="N")[0]
    Etrace = st.select(component="E")[0]
    smooth_env = sp.smooth(env)
    imax = np.argmax(smooth_env)
    end_window = int(np.round(imax / 3.))

    # normalise to get decent numbers
    maxZ = max(abs(Ztrace.data))
    xP = Etrace.data[0:end_window] / maxZ
    yP = Ntrace.data[0:end_window] / maxZ
    zP = Ztrace.data[0:end_window] / maxZ

    try:
        MP = np.cov(np.array([xP, yP, zP]))
        w, v = np.linalg.eig(MP)
    except np.linalg.linalg.LinAlgError:
        return np.NaN, np.NaN, np.NaN, np.NaN

    indexes = np.argsort(w)
    DP = w[indexes]
    pP = v[:, indexes]

    rectilinP = 1 - ((DP[0] + DP[1]) / (2 * DP[2]))
    azimuthP = np.arctan(pP[1, 2] / pP[0, 2]) * 180. / np.pi
    dipP = np.arctan(
        pP[2, 2] / np.sqrt(pP[1, 2]**2 + pP[0, 2]**2)) * 180 / np.pi
    Plani = 1 - (2 * DP[0]) / (DP[1] + DP[2])

    return rectilinP, azimuthP, dipP, Plani
Exemplo n.º 2
0
def get_CorrStuff(tr):

    min_peak_height = 0.4
    # This value is sligtly greater than the matlab one, to account for
    # differences in floating precision

    cor = np.correlate(tr.data, tr.data, mode='full')
    cor = cor / np.max(cor)

    # find number of peaks
    cor_env = np.abs(hilbert(cor))
    cor_smooth = sp.smooth(cor_env)
    npts = len(cor_smooth)
    max_cor = np.max(cor_smooth)
    CorPeakNumber, itriggers = sp.find_peaks(cor_smooth, min_peak_height)

    # integrate over bands
    ilag_0 = np.argmax(cor_smooth) + 1
    ilag_third = ilag_0 + npts / 6

    # note that these integrals are flase really (dt is not correct)
    int1 = np.trapz(cor_smooth[ilag_0:ilag_third + 1] / max_cor)
    int2 = np.trapz(cor_smooth[ilag_third:] / max_cor)
    int_ratio = int1 / int2

    return CorPeakNumber, int_ratio
Exemplo n.º 3
0
 def test_smooth(self):
     imax_fraction = 0.2
     max_amp = 300
     tr, modulation = syn.modulate_trace_triangle(self.tr, imax_fraction,
                                                  max_amp)
     smooth_modulation = sp.smooth(modulation)
     self.assertEqual(len(modulation), len(smooth_modulation))
     self.assertEqual(np.argmax(modulation), np.argmax(smooth_modulation))
Exemplo n.º 4
0
def get_RappStuff(tr, env=None):

    # get max over mean / median / std
    if env is None:
        env = envelope(tr.data)

    max_env = max(env)
    smooth_norm_env = sp.smooth(env / max_env)

    RappMaxMean = 1. / np.mean(smooth_norm_env)
    RappMaxMedian = 1. / np.median(smooth_norm_env)
    RappMaxStd = 1. / np.std(smooth_norm_env)

    return RappMaxMean, RappMaxMedian, RappMaxStd
Exemplo n.º 5
0
def get_AsDec(tr, env=None):

    # smooth data using a filter of the same length as the sampling rate
    # to give 1-second smoothing window

    if env is None:
        env = envelope(tr.data)

    smooth_env = sp.smooth(env)

    imax = np.argmax(smooth_env)
    AsDec = (imax + 1) / float(len(tr.data) + 1 - (imax + 1))
    # note : the +1s are to avoid zeros or division by zero

    return AsDec
Exemplo n.º 6
0
def get_KurtoSkew(tr, env=None):

    if env is None:
        env = envelope(tr.data)

    max_env = max(env)
    smooth_norm_env = sp.smooth(env / max_env)

    max_sig = max(tr.data)
    norm_sig = tr.data / max_sig

    KurtoEnv = kurtosis(smooth_norm_env, fisher=False)
    KurtoSig = kurtosis(norm_sig, fisher=False)

    SkewnessEnv = skew(smooth_norm_env)
    SkewnessSig = skew(norm_sig)

    return KurtoEnv, KurtoSig, SkewnessEnv, SkewnessSig
Exemplo n.º 7
0
import numpy as np
from copy import deepcopy
from obspy.signal.filter import envelope
from scipy.signal import spline_filter, hilbert

#sig1 = syn.gen_gaussian_noise(0.01, 54321, 100)
dt = 0.01
npts = 3000
t_vect = np.arange(npts) * dt

sig1 = syn.gen_sweep_poly(dt, npts, [0.05, -0.75, 0.1, 1.0])
sig2 = sig1.copy()

sig2, modulation = syn.modulate_trace_triangle(sig2, 0.2, 300)
env = envelope(sig2.data)
smooth_env1 = sp.smooth(env, window='hanning')
smooth_env2 = sp.smooth(env, window='flat')
assert (len(env) == len(smooth_env1))

rep = syn.gen_repeat_signal(dt, npts, 100, 5)
cor = np.correlate(rep.data, rep.data, mode='full')
t_vect_cor = np.arange(len(cor)) * dt - len(cor) / 2 * dt
cor_env = np.abs(hilbert(cor))
cor_smooth = sp.smooth(cor_env)
max_cor = np.max(cor_smooth)
cor_smooth2 = sp.smooth(cor_smooth / max_cor)

NyF = 1 / (2.0 * dt)
sig3 = syn.gen_gaussian_noise(dt, npts, 100)
FFI = [0.1, 1, 3, 10, 20]
nf = len(FFI)
Exemplo n.º 8
0
def get_full_spectrum_stuff(tr):

    sps = tr.stats.sampling_rate
    NyF = sps / 2.0

    data = tr.data
    npts = tr.stats.npts
    n = sp.nextpow2(2 * npts - 1)
    df = n / 2 * NyF
    Freq1 = np.linspace(0, 1, n / 2) * NyF

    FFTdata = 2 * np.abs(np.fft.fft(data, n=n)) / float(npts * npts)
    FFTsmooth = sp.smooth(FFTdata[0:len(FFTdata) / 2])
    FFTsmooth_norm = FFTsmooth / max(FFTsmooth)

    MeanFFT = np.mean(FFTsmooth_norm)
    MedianFFT = np.median(FFTsmooth_norm)
    VarFFT = np.var(FFTsmooth_norm, ddof=1)
    MaxFFT = np.max(FFTsmooth)
    iMaxFFT = np.argmax(FFTsmooth)
    FmaxFFT = Freq1[iMaxFFT]

    xCenterFFT = np.sum((np.arange(len(FFTsmooth_norm))) *
                        FFTsmooth_norm) / np.sum(FFTsmooth_norm)
    i_xCenterFFT = int(np.round(xCenterFFT))

    xCenterFFT_1quart = np.sum((np.arange(i_xCenterFFT+1)) *
                               FFTsmooth_norm[0:i_xCenterFFT+1]) /\
        np.sum(FFTsmooth_norm[0:i_xCenterFFT+1])
    i_xCenterFFT_1quart = int(np.round(xCenterFFT_1quart))

    xCenterFFT_3quart = np.sum((np.arange(len(FFTsmooth_norm) -
                                         i_xCenterFFT)) *
                              FFTsmooth_norm[i_xCenterFFT:]) /\
        np.sum(FFTsmooth_norm[i_xCenterFFT:]) + i_xCenterFFT+1
    i_xCenterFFT_3quart = int(np.round(xCenterFFT_3quart))

    FCentroid = Freq1[i_xCenterFFT]
    Fquart1 = Freq1[i_xCenterFFT_1quart]
    Fquart3 = Freq1[i_xCenterFFT_3quart]

    min_peak_height = 0.75
    NpeakFFT, ipeaks = sp.find_peaks(FFTsmooth_norm, min_peak_height)

    npeaks, nb = ipeaks.shape
    sum_peaks = 0.
    for i in xrange(npeaks):
        i1 = ipeaks[i, 0]
        i2 = ipeaks[i, 1]
        if i2 > i1:
            sum_peaks += max(FFTsmooth_norm[i1:i2])
    MeanPeaksFFT = sum_peaks / float(npeaks)

    npts = len(FFTsmooth_norm)
    E1FFT = np.trapz(FFTsmooth_norm[0:npts / 4], dx=df)
    E2FFT = np.trapz(FFTsmooth_norm[npts / 4 - 1:2 * npts / 4], dx=df)
    E3FFT = np.trapz(FFTsmooth_norm[2 * npts / 4 - 1:3 * npts / 4], dx=df)
    E4FFT = np.trapz(FFTsmooth_norm[3 * npts / 4 - 1:npts], dx=df)

    moment = np.empty(3, dtype=float)

    for j in xrange(3):
        moment[j] = np.sum(Freq1**j * FFTsmooth_norm[0:n / 2]**2)
    gamma1 = moment[1] / moment[0]
    gamma2 = np.sqrt(moment[2] / moment[0])
    gammas = np.sqrt(np.abs(gamma1**2 - gamma2**2))

    return MeanFFT, MaxFFT, FmaxFFT, MedianFFT, VarFFT, FCentroid, Fquart1,\
        Fquart3, NpeakFFT, MeanPeaksFFT, E1FFT, E2FFT, E3FFT, E4FFT, gamma1,\
        gamma2, gammas