Exemplo n.º 1
0
def main():
    plane_mask=True
    pmval=1
    bcut=False
    bmin=-90
    bmax=90
    lcut=False
    lmin=-180
    lmax=180
    mask_ring=True
    inner=0
    outer=30

    maps_dir = '/zfs/bsafdi/data/'
    fermi_data_dir = '/zfs/tslatyer/fermimaps/allsky/'
    work_dir = '/zfs/nrodd/NPTFWorking/'
    emin=8
    emax=9
    nside=256
    eventclass=5
    eventtype=3
    newstyle=1
    ps_file = '/zfs/nrodd/NPTFWorking/data/ps_data/ps_lists/3FGL_0to15_tiny.txt'
    n_ps_run=10
    indeg=True

    #loadforpsf = fp.fermi_plugin(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle)
    f = sim.fake_fermi_data(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle)
    f.load_psf()
    sigma_PSF_deg = f.sigma_PSF_deg[0:-1]

    print "sigma_PSF_deg:",sigma_PSF_deg
    print "Ebin:",emin
    print "Eventclass:",eventclass
    print "Eventtype:",eventtype

    print "Gaussian results:"
    start = time.time()
    the_map = np.ones(hp.nside2npix(256))
    simt.draw_points(sigma_PSF_deg,1000000,0.,0.,the_map)
    end = time.time()
    #print "Time taken:",end - start

    f.load_king_param()

    print "King results:"
    start = time.time()
    the_map = np.ones(hp.nside2npix(256))
    simt.draw_points_king(f.fcore_arr[0],f.score_arr[0],f.gcore_arr[0],f.stail_arr[0],f.gtail_arr[0],f.SpE_arr[0],1000000,0.,0.,the_map)
    end = time.time()
Exemplo n.º 2
0
def main():
    # Define basic vars
    maps_dir = '/zfs/bsafdi/data/'
    fermi_data_dir = '/zfs/tslatyer/fermimaps/allsky/'
    work_dir = '/zfs/nrodd/NPTFWorking/'
    emin=0
    emax=4
    nside=256
    eventclass=5
    eventtype=0
    newstyle=1
    ps_file = '/zfs/nrodd/NPTFWorking/data/ps_data/ps_lists/3FGL_0to15_tiny.txt'
    n_ps_run=10
    indeg=True

    #loadforpsf = fp.fermi_plugin(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle)
    f = sim.fake_fermi_data(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle,use_king=True)
    f.load_psf()
    sigma_PSF_deg = f.sigma_PSF_deg[0:-1]
    f.load_king_param()
Exemplo n.º 3
0
disk_file_name=  'thindiskmodel_ec.fits' #'simplediskmodel_ec.fits'


####################
##########Internal code

###dirs

P_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_poiss + '/'
NDI_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_plus_iso + '/'
DI_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_disk_only + '/'


####fermi fake data

f = sim.fake_fermi_data(maps_dir,CTB_en_min=CTB_start_bin,CTB_en_max=CTB_end_bin,nside=nside,data_name=data_type)


f.add_diffuse(comp = 'p6') #diffuse
f.add_bubbles() #bubbles
f.add_iso()  #iso
f.add_nfw()  #NFW-DM
f.add_template_from_file('disk',disk_file_name) #we will call template 'disk'

f.use_template_normalization_file(norm_file_path,key_suffix='-0')

if prun:
    f_P = copy.deepcopy(f)
if jdrun:
    f_DI = copy.deepcopy(f)
if ndirun:
Exemplo n.º 4
0
def setup_for_scan():
    global f, b, new_template_dict, n_ps, newstyle
    # Load Fermi Plugin and its basic functionality
    f = sim.fake_fermi_data(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle)

    if mask_type!='False':
        f.make_ps_mask(mask_type=mask_type,force_energy=force_ps_mask,energy_bin=force_ps_mask_bin)
    # Add appropriate templates
    f.add_diffuse_newstyle(comp = diff, eventclass = eventclass, eventtype = eventtype)
    if extraicstemp!='False':
        f.add_diffuse_newstyle(comp = extraicstemp, eventclass = eventclass, eventtype = eventtype)
    f.add_bubbles(comp = 'bubs')
    f.add_iso(comp = 'iso')
    if add_ps_model:
        f.add_ps_model(comp = 'ps_model')
    if nfw_dm:
        f.add_nfw(comp = 'nfw')
    f.add_template_from_file('disk',disk_file_name) # always add the disk here even if don't use as often needed for NPTF
    if norm_file!='False':
        if len(add_norm_file_for_comps) > 0 and add_norm_file != 'False':
            print 'using first normalization file: ', norm_file
            f.use_template_normalization_file(norm_file,key_suffix='-0',dont_use_keys=add_norm_file_for_comps)
            print 'using second normalization file: ', add_norm_file
            f.use_template_normalization_file(add_norm_file,key_suffix='-0',use_keys=add_norm_file_for_comps)
        else:
            f.use_template_normalization_file(norm_file,key_suffix='-0')

    # This is where things begin to vary from a normal run to make fake data
    medians = np.load(plots_dir + 'medians.npy')
    
    norms_dict = {}

    # Assumes only template that had a log prior was the NFW
    for i in range(len(medians)):
        if medians[i,0] == 'nfw-0':
            val = 10**float(medians[i,1])
        else:
            val = float(medians[i,1])
        norms_dict[medians[i,0]] = val

    #norms_dict = {'p6-0':0.5}

    # Now rescale the templates to the norm extracted from the fits
    for key in norms_dict.keys():
        print 'on key ',key[:-2]
        print np.shape(f.template_dict[key[:-2]])
        print norms_dict[key]
        f.template_dict[key[:-2]] = norms_dict[key]*np.array(f.template_dict[key[:-2]])

    # Initiate Poissonian background templates
    #f.init_back(['nfw','iso','bubs','p6'])
    f.init_back(['p6','bubs','nfw','iso'])
    
    # Make the mask
    f.make_mask_total(plane_mask=plane_mask, band_mask_range = [-pmval,pmval], lcut=lcut, lmin=lmin, lmax=lmax, bcut=bcut, bmin=bmin, bmax=bmax, mask_ring=mask_ring, inner=inner, outer=outer)

    # Make the fake data
    f.make_fake_data()

    # Save the fake data and the location of the point sources (called keys)
    f.save_fake_data(plots_dir + 'FD_ap.txt.gz')
    f.save_fake_data_key(plots_dir + 'FD_ap_key.txt.gz')
Exemplo n.º 5
0
def setup_for_scan():
    global f, b, new_template_dict, n_ps, newstyle
    # Load Fermi Plugin and its basic functionality
    f = sim.fake_fermi_data(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min = emin,CTB_en_max=emax,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle)

    if mask_type!='False':
        f.make_ps_mask(mask_type=mask_type,force_energy=force_ps_mask,energy_bin=force_ps_mask_bin)
    # Add appropriate templates
    f.add_diffuse_newstyle(comp = diff, eventclass = eventclass, eventtype = eventtype)
    if extraicstemp!='False':
        f.add_diffuse_newstyle(comp = extraicstemp, eventclass = eventclass, eventtype = eventtype)
    f.add_bubbles(comp = 'bubs')
    f.add_iso(comp = 'iso')
    if add_ps_model:
        f.add_ps_model(comp = 'ps_model')
    if nfw_dm:
        f.add_nfw(comp = 'nfw')
    f.add_template_from_file('disk',disk_file_name) # always add the disk here even if don't use as often needed for NPTF
    if norm_file!='False':
        if len(add_norm_file_for_comps) > 0 and add_norm_file != 'False':
            print 'using first normalization file: ', norm_file
            f.use_template_normalization_file(norm_file,key_suffix='-0',dont_use_keys=add_norm_file_for_comps)
            print 'using second normalization file: ', add_norm_file
            f.use_template_normalization_file(add_norm_file,key_suffix='-0',use_keys=add_norm_file_for_comps)
        else:
            f.use_template_normalization_file(norm_file,key_suffix='-0')

    # This is where things begin to vary from a normal run to make fake data
    medians = np.load(plots_dir + 'medians.npy')
    
    norms_dict = {}

    # Assumes only template that had a log prior was the NFW
    for i in range(len(medians)):
        if medians[i,0] == 'nfw-0':
            val = 10**float(medians[i,1])
        else:
            val = float(medians[i,1])
        norms_dict[medians[i,0]] = val

    # Now rescale the templates to the norm extracted from the fits
    for key in norms_dict.keys():
        print 'on key ',key[:-2]
        print np.shape(f.template_dict[key[:-2]])
        print norms_dict[key]
        f.template_dict[key[:-2]] = norms_dict[key]*np.array(f.template_dict[key[:-2]])

    # Initiate Poissonian background templates
    f.init_back(['nfw','iso','bubs','p6'])
    
    # Make the mask
    f.make_mask_total(plane_mask=plane_mask, band_mask_range = [-pmval,pmval], lcut=lcut, lmin=lmin, lmax=lmax, bcut=bcut, bmin=bmin, bmax=bmax, mask_ring=mask_ring, inner=inner, outer=outer)

    def load_ps_template(ps_path):
        with open(ps_path, 'rb') as F:
            the_list = pickle.load(F)
        return the_list

    list_disk = load_ps_template(plots_dir + 'disk_ps.txt')
    list_iso = load_ps_template(hl_plots_dir + 'iso_ps.txt')
    if not just_disk:
        list_nfw = load_ps_template(plots_dir + 'nfw_ps.txt')

    # Use spectrum norms
    bins = emax - emin

    if not just_disk:
        nfw_norm_reduced=np.array([np.mean(f.template_dict['nfw'][en]) for en in range(bins)])

    # Make e-dep breaks - I calculated these in Mathematica
    Sb_iso_list = np.array([0.804978, 0.838517, 0.873453, 0.909845, 0.947752, 0.98724, 1.02837, 1.07122, 1.11585, 1.16234])
    if not just_disk:
        Sb_nfw_list = list_nfw[0][3]*nfw_norm_reduced / np.sum(nfw_norm_reduced)
    else:
        Sb_disk_list = np.array([1.84547, 1.1267, 0.68787, 0.419958, 0.256393, 0.156533, 0.0955661, 0.058345, 0.0356207, 0.0217471])

    # Make theta lists
    theta_ps_iso=list_iso[0][0:3]+list(Sb_iso_list)
    if not just_disk:
        theta_ps_nfw=list_nfw[0][0:3]+list(Sb_nfw_list)
    else:
        theta_ps_disk=list_disk[0][0:3]+list(Sb_disk_list)

    # Load PSF
    f.load_king_param()
    
    # Now add the NPTF models
    f.init_ps_king(list_iso[1],theta_ps_iso,f.fcore_arr,f.score_arr,f.gcore_arr,f.stail_arr,f.gtail_arr,f.SpE_arr,n_ps=n_ps_max,smin=0.1)
    if not just_disk:
        f.init_ps_king(list_nfw[1],theta_ps_nfw,f.fcore_arr,f.score_arr,f.gcore_arr,f.stail_arr,f.gtail_arr,f.SpE_arr,n_ps=n_ps_max,smin=0.1)
    else:
        f.init_ps_king(list_disk[1],theta_ps_disk,f.fcore_arr,f.score_arr,f.gcore_arr,f.stail_arr,f.gtail_arr,f.SpE_arr,n_ps=n_ps_max,smin=0.1)

    # Make the fake data
    f.make_fake_data()

    # Save the fake data and the location of the point sources (called keys)
    f.save_fake_data(plots_dir + 'FD.txt.gz')
    f.save_fake_data_key(plots_dir + 'FD_key.txt.gz')
Exemplo n.º 6
0
disk_file_name=  'thindiskmodel_ec.fits' #'simplediskmodel_ec.fits'


####################
##########Internal code

###dirs

P_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_poiss + '/'
NDI_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_plus_iso + '/'
DI_plots_dir = work_dir + 'plots/' + tag + '/' + run_tag_disk_only + '/'


####fermi fake data

f = sim.fake_fermi_data(maps_dir,fermi_data_dir=fermi_data_dir,work_dir=work_dir,CTB_en_min=CTB_start_bin,CTB_en_max=CTB_end_bin+1,nside=nside,eventclass=eventclass,eventtype=eventtype,newstyle=newstyle

f.add_diffuse_newstyle(comp = 'p6', eventclass = eventclass, eventtype = eventtype)
f.add_bubbles() #bubbles
f.add_iso()  #iso
f.add_nfw()  #NFW-DM
f.add_template_from_file('disk',disk_file_name) #we will call template 'disk'

f.use_template_normalization_file(norm_file_path,key_suffix='-0')

if prun:
    f_P = copy.deepcopy(f)
if jdrun:
    f_DI = copy.deepcopy(f)
if ndirun:
    f_NDI = copy.deepcopy(f)