def action_one_shot(in_path, out_path=None, n_epochs=5): dtw_feats = data.actions.read_actions(in_path) dtw_feats.transform(lambda img_i: np.expand_dims(img_i, axis=-1)) make_model = sim.imgs.make_conv sim_train = sim.SimTrain(make_model, sim.all_cat) params = {'input_shape': (64, 64, 1)} sim_train(dtw_feats, out_path, n_epochs, params)
def dtw_one_shot(in_path,out_path=None,n_epochs=5): dtw_feats=feats.read_feats(in_path) dtw_feats.norm() def all_cat(name_i,name_j): return int(name_i.split('_')[0]==name_j.split('_')[0]) make_model=get_basic_model() sim_train=sim.SimTrain(make_model,all_cat) sim_train(dtw_feats,out_path,n_epochs)
def get_train(): get_model=TS_SIM() get_cat=sim.all_cat read=data.seqs.read_seqs params={'input_shape':(64,100)} train_sim=sim.SimTrain(get_model,get_cat,read,2) def train(in_path,out_path,n_epochs): return train_sim(in_path,out_path,n_epochs,params=params) return train
def binary_one_shot(in_path, out_path, n_epochs=5): n_cats = 20 dataset = feats.read_feats(in_path) get_cat = BinaryCat() sim_nn = sim.SimTrain(one_shot.get_basic_model(), get_cat) def binary_gen(nn_path, i): get_cat.cat = i sim_nn(dataset, nn_path, n_epochs) funcs = [[one_shot.dtw_extract, ["in_path", "nn", "feats"]]] dir_names = ["feats"] arg_dict = {'in_path': in_path} binary_ens = ens.BinaryEns(binary_gen, funcs, dir_names) binary_ens(out_path, n_cats, arg_dict)
def binary_one_shot(in_path, out_path, n_epochs=5): n_cats = 12 dataset = read_actions(in_path) dataset.add_dim() get_cat = binary.BinaryCat() sim_nn = sim.SimTrain(sim.imgs.make_conv, get_cat) def binary_gen(nn_path, i): get_cat.cat = i sim_nn(dataset, nn_path, n_epochs) funcs = [[extract, ["in_path", "nn", "feats"]]] dir_names = ["feats"] arg_dict = {'in_path': in_path} binary_ens = ens.BinaryEns(binary_gen, funcs, dir_names) binary_ens(out_path, n_cats, arg_dict)