def test_batch_sim(self):
        # specify start_time as the beginning of today
        now = datetime.now()
        start_time = datetime.combine(now.date(), datetime.min.time())

        # --------- Create Random Scenario --------------
        # Create a simulation environment
        patient = T1DPatient.withName('adolescent#001')
        sensor = CGMSensor.withName('Dexcom', seed=1)
        pump = InsulinPump.withName('Insulet')
        scenario = RandomScenario(start_time=start_time, seed=1)
        env = T1DSimEnv(patient, sensor, pump, scenario)

        # Create a controller
        controller = BBController()

        # Put them together to create a simulation object
        s1 = SimObj(env, controller, timedelta(
            days=2), animate=True, path=save_folder)
        results1 = sim(s1)

        # --------- Create Custom Scenario --------------
        # Create a simulation environment
        patient = T1DPatient.withName('adolescent#001')
        sensor = CGMSensor.withName('Dexcom', seed=1)
        pump = InsulinPump.withName('Insulet')
        # custom scenario is a list of tuples (time, meal_size)
        scen = [(7, 45), (12, 70), (16, 15), (18, 80), (23, 10)]
        scenario = CustomScenario(start_time=start_time, scenario=scen)
        env = T1DSimEnv(patient, sensor, pump, scenario)

        # Create a controller
        controller = BBController()

        # Put them together to create a simulation object
        s2 = SimObj(env, controller, timedelta(
            days=2), animate=False, path=save_folder)
        results2 = sim(s2)

        # --------- batch simulation --------------
        s1.reset()
        s2.reset()
        s1.animate = False
        s = [s1, s2]
        results_para = batch_sim(s, parallel=True)

        s1.reset()
        s2.reset()
        s = [s1, s2]
        results_serial = batch_sim(s, parallel=False)

        assert_frame_equal(results_para[0], results1)
        assert_frame_equal(results_para[1], results2)
        for r1, r2 in zip(results_para, results_serial):
            assert_frame_equal(r1, r2)
 def local_build_env(pname):
     patient = T1DPatient.withName(pname)
     cgm_sensor = CGMSensor.withName(cgm_sensor_name, seed=cgm_seed)
     insulin_pump = InsulinPump.withName(insulin_pump_name)
     scen = copy.deepcopy(scenario)
     env = T1DSimEnv(patient, cgm_sensor, insulin_pump, scen)
     return env
Exemplo n.º 3
0
def run_sim_PID_once(pname, runtime, meals, controller_params):
    '''
    Run the simulation a single time on a single patient with the PID controller.

    Parameters
    ----------
    pname: str
        patient name
    runtime: int
        simulation time, in hours.
    meals: (timedelta, int)
        a tuple containing the time of meal (as referenced from simulation start) and the meal size, in grams.
    targetBG: int
        the target blood glucose for the controller, in mg/dl
    lowBG: int
        the pump suspension glucose for the controller, in mg/dl

    Returns
    -------
    A pandas dataframe containing the simulation results.
        axis=0: time, type datetime.datetime
        axis=1: data category, type str
    '''
    sensor = CGMSensor.withName('Dexcom')
    pump = InsulinPump.withName('Insulet')
    scenario = CustomScenario(start_time = datetime(2020, 1, 1, 0,0,0), scenario=meals)
    obj = SimObj(T1DSimEnv(T1DPatient.withName(pname), 
        sensor, 
        pump, 
        scenario),
        controller.PIDController(controller_params, pname),
        timedelta(hours=runtime),
        animate=False,
        path=None)
    return sim(obj)
Exemplo n.º 4
0
 def build_env(pname):
     patient = T1DPatient.withName(pname)
     sensor = CGMSensor.withName('Dexcom')
     pump = InsulinPump.withName('Insulet')
     copied_scenario = copy.deepcopy(scenario)
     env = T1DSimEnv(patient, sensor, pump, copied_scenario)
     return env
Exemplo n.º 5
0
    def test_results_consistency(self):
        # Test data
        results_exp = pd.read_csv(TESTDATA_FILENAME, index_col=0)
        results_exp.index = pd.to_datetime(results_exp.index)

        # specify start_time as the beginning of today
        start_time = datetime(2018, 1, 1, 0, 0, 0)

        # --------- Create Random Scenario --------------
        # Create a simulation environment
        patient = T1DPatient.withName('adolescent#001')
        sensor = CGMSensor.withName('Dexcom', seed=1)
        pump = InsulinPump.withName('Insulet')
        scenario = RandomScenario(start_time=start_time, seed=1)
        env = T1DSimEnv(patient, sensor, pump, scenario)

        # Create a controller
        controller = BBController()

        # Put them together to create a simulation object
        s = SimObj(env,
                   controller,
                   timedelta(days=2),
                   animate=False,
                   path=save_folder)
        results = sim(s)
        assert_frame_equal(results, results_exp)
Exemplo n.º 6
0
def run_sim_PID(no_runs, patients, runtime, meals, controller_params):
    '''
    Run the simulation a single time on a list of patients with the PID controller.

    Parameters
    ----------
    no_runs: int
        the number of separate simulation runs.
    patients: list of str
        a list of patient name strings. Patient name strings can be found in the params/Quest.csv file inside simGlucose.
    runtime: int
        simulation time, in hours.
    meals: (timedelta, int)
        a tuple containing the time of meal (as referenced from simulation start) and the meal size, in grams.
    targetBG: int
        the target blood glucose for the controller, in mg/dl
    lowBG: int
        the pump suspension glucose for the controller, in mg/dl

    Returns
    -------
    A pandas dataframe containing the simulation results.
        axis=0: time, type datetime.datetime
        axis=1: MultiIndex
            level 0: data category, type str
            level 1: patient id, type str
            level 2: run number, type int (starts at 1)
    '''
    sensor = CGMSensor.withName('Dexcom')
    pump = InsulinPump.withName('Insulet')
    scenario = CustomScenario(start_time = datetime(2020, 1, 1, 0,0,0), scenario=meals)
    sim_objs = []
    keys = []
    for run in range(0, no_runs):
        for pname in patients:
            sim_objs.append(SimObj(T1DSimEnv(T1DPatient.withName(pname), 
                                sensor, 
                                pump, 
                                copy.deepcopy(scenario)), # because random numbers.
                                controller.PIDController(controller_params, pname),
                                timedelta(hours=runtime),
                                animate=False,
                                path=None))
            keys.append((run + 1, pname))
    p_start = time.time()
    print('Running batch simulation of {} items...'.format(len(patients * no_runs)))
    p = pathos.pools.ProcessPool()
    results = p.map(sim, sim_objs)
    print('Simulation took {} seconds.'.format(time.time() - p_start))
    return pd.concat(results, axis=1, keys=keys)
Exemplo n.º 7
0
def pidsim():
    for idx,patient in enumerate(patients):
        patient = T1DPatient.withName(patient)
        sensor = CGMSensor.withName('Dexcom', seed=1)
        pump = InsulinPump.withName('Insulet')
        p,i,d = pidparams[idx]
        for seed in range (10,20):
            scenario = RandomScenario(start_time=start_time, seed=randint(10, 99999))
            env = T1DSimEnv(patient, sensor, pump, scenario)
            # Create a controller
            controller = FoxPIDController(112.517,kp=p, ki=i, kd=d)
            # Put them together to create a simulation object
            s1 = SimObj(env, controller, timedelta(days=10), animate=False, path=path+str(seed))
            results1 = sim(s1)
            print('Complete:',patient.name,'-',seed)
    print('All done!')
Exemplo n.º 8
0
def bbsim():
    for patient in patients:
        patient = T1DPatient.withName(patient)
        sensor = CGMSensor.withName('Dexcom', seed=1)
        pump = InsulinPump.withName('Insulet')
        for seed in range(10, 20):
            scenario = RandomScenario(start_time=start_time,
                                      seed=randint(10, 99999))
            env = T1DSimEnv(patient, sensor, pump, scenario)
            # Create a controller
            controller = BBController()

            # Put them together to create a simulation object
            s1 = SimObj(env,
                        controller,
                        timedelta(days=10),
                        animate=False,
                        path=path + str(seed))
            results1 = sim(s1)
            print('Complete:', patient.name, '-', seed)
    print('All done!')
Exemplo n.º 9
0
        filename = 'dfs/' + 'p_' + str(PIDparams[0]) + ' i_' + str(PIDparams[1]) + ' d_' + str(PIDparams[2]) + ' target_' + str(PIDparams[3]) + '.bz2'
        dfs.to_pickle(filename)
=======
    pname = "adult#001"
    t = 9
    meals = [(timedelta(hours=2), 50)]
    sensor = CGMSensor.withName('Dexcom')
    pump = InsulinPump.withName('Insulet')
    scenario = CustomScenario(start_time = datetime(2020, 1, 1, 0,0,0), scenario=meals)
    keys = []
    # forward horizon
    horizon = 50
    controller_params = (140, 80, horizon)
    obj= SimObj(T1DSimEnv(T1DPatient.withName(pname), 
                        sensor, 
                        pump, 
                        copy.deepcopy(scenario)), # because random numbers.
                        controller.MPCNaive(controller_params, pname),
                        timedelta(hours=t),
                        animate=False,
                        path=None)
    keys.append((1, pname))
    p_start = time.time()
    results = sim(obj)
    print('Simulation took {} seconds.'.format(time.time() - p_start))
    dfs = results
    filename = 'mpc_test.bz2'
    dfs.to_pickle(filename)
>>>>>>> MPC-exploration
        
from datetime import datetime

# specify start_time as the beginning of today
now = datetime.now()
start_time = datetime.combine(now.date(), datetime.min.time())

# --------- Create Random Scenario --------------
# Specify results saving path
path = './results'

# Create a simulation environment
patient = T1DPatient.withName('adolescent#001')
sensor = CGMSensor.withName('Dexcom', seed=1)
pump = InsulinPump.withName('Insulet')
scenario = RandomScenario(start_time=start_time, seed=1)
env = T1DSimEnv(patient, sensor, pump, scenario)

# Create a controller
controller = BBController()

# Put them together to create a simulation object
s1 = SimObj(env, controller, timedelta(days=1), animate=False, path=path)
results1 = sim(s1)
print(results1)

# --------- Create Custom Scenario --------------
# Create a simulation environment
patient = T1DPatient.withName('adolescent#001')
sensor = CGMSensor.withName('Dexcom', seed=1)
pump = InsulinPump.withName('Insulet')
# custom scenario is a list of tuples (time, meal_size)
Exemplo n.º 11
0
        self.state = init_state
    def policy(self, observation, reward, done, **info):
        self.state = observation
        action = Action(basal=.0, bolus=0)
        return action
    def reset(self):
        self.state = self.init_state

# patient setup
patientID = 12
patient = T1DPatient.withID(12)
sim_sensor = CGMSensor.withName('Dexcom')
sim_pump = InsulinPump.withName('Insulet')

# env setup
RANDOM_SEED = 25
sim_start_time = datetime.now()
sim_run_time =  timedelta(hours=24)
sim_scenario = RandomScenario(start_time = sim_start_time, seed = RANDOM_SEED)
environment = T1DSimEnv(patient, sim_sensor, sim_pump, sim_scenario)
controller = blankController(0)

# script saves csv(s) into this path
results_path = './results/'
simulator = SimObj(
    environment,
    controller,
    sim_run_time,
    animate=False,
    path = results_path
sim(simulator)
Exemplo n.º 12
0
# env setup
RANDOM_SEED = 5550
RUN_TIME = 48
sim_start_time = datetime(2020, 1, 1, 0, 0, 0)
sim_run_time = timedelta(hours=RUN_TIME)

# random scenario
random_scen = RandomScenario(start_time=sim_start_time, seed=RANDOM_SEED)

# custom scenario
# meals is a list of tuples, each tuple containing a timedelta (time after start of sim) and a meal size, in g CHO.
meals = [(timedelta(hours=12), 100)]
# generate the custom scenario with the list of meals
custom_scen = CustomScenario(start_time=sim_start_time, scenario=meals)

# choose scenario
environment = T1DSimEnv(patient, sim_sensor, sim_pump, custom_scen)

# choose controller
controller = PController(gain=0.04, dweight=.5, pweight=1, target=120)

# script saves csv(s) into this path
results_path = './results/'
simulator = SimObj(environment,
                   controller,
                   sim_run_time,
                   animate=False,
                   path=results_path)
results = sim(simulator)
plotBG.group_plot(results, savedir='./results')