Exemplo n.º 1
0
import numpy as np
import sys
sys.path.append('./src')
sys.path.append('./src/lib')
from simple_net import SimpleNet
from gradient import numerical_gradient

net = SimpleNet()
print(net.W)
# >>> [[-0.44439281  0.30789016 -1.50579685]
#      [-0.93170709  0.08170439 -0.12740328]]

x = np.array([0.6, 0.9])
p = net.predict(x)
print(p)
# >>> [ 1.00824761 -1.47819523  0.03650346]

print(np.argmax(p))
# >> 1

t = np.array([0, 0, 1])
print(net.loss(x, t))
# >>> 1.704819611629646

f = lambda w: net.loss(x, t)
dW = numerical_gradient(f, net.W)
print(dW)
# >>> [[ 0.09999078  0.39092591 -0.49091668]
#      [ 0.14998616  0.58638886 -0.73637502]]
Exemplo n.º 2
0
    # load model
    #    network = SimpleNet(input_size=1 , hidden_size=10, output_size=1 )
    network = SimpleNet(input_size=3, hidden_size=10, output_size=1)
    network.load_params("params.pkl")
    #print( network.params["W1"] )
    #pred
    train_acc = network.accuracy(x_train, y_train)
    test_acc = network.accuracy(x_test, y_test)
    #
    print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
    #
    #    x_test_dt= conv_num_date(x_test_pred )
    #    x_train_dt= conv_num_date(x_train )
    #print(x_test_dt.shape )
    print(x_test[:10])
    y_val = network.predict(x_test[:10])
    y_val = y_val * num_max_y
    print(y_val)
    #    quit()

    y_train = y_train * num_max_y
    y_val = y_val * num_max_y
    print('time : ', time.time() - global_start_time)
    #print(y_val[:10] )
    #print(x_test_dt[:10] )
    quit()
    #plt
    plt.plot(x_train_dt, y_train, label="temp")
    plt.plot(x_test_dt, y_val, label="predict")
    plt.legend()
    plt.grid(True)
Exemplo n.º 3
0
 print(x_train.shape, y_train.shape)
 print(x_test.shape, y_test.shape)
 # load
 network = SimpleNet(input_size=1, hidden_size=10, output_size=1)
 network.load_params("params.pkl")
 #print( network.params["W1"] )
 #pred
 train_acc = network.accuracy(x_train, y_train)
 test_acc = network.accuracy(x_test, y_test)
 #
 print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
 #
 x_test_dt = conv_num_date(x_test_pred)
 x_train_dt = conv_num_date(x_train)
 #print(x_test_dt.shape )
 y_val = network.predict(x_test_pred)
 y_train = y_train * num_max_y
 y_val = y_val * num_max_y
 print('time : ', time.time() - global_start_time)
 #print(y_val[:10] )
 #print(x_test_dt[:10] )
 #quit()
 #plt
 plt.plot(x_train_dt, y_train, label="temp")
 plt.plot(x_test_dt, y_val, label="predict")
 plt.legend()
 plt.grid(True)
 plt.title("IoT data")
 plt.xlabel("x_test")
 plt.ylabel("temperature")
 plt.show()