Exemplo n.º 1
0
def test3(limit):
    matches = [16]
    test = 15
    interval = 1
    direction = 1
    ratio = 3
    while matches[-1] < limit:
        if test % 2 == 0:
            h1 = heron_area_squared(test, test + 1, test + 1)
            if is_perfect_square(h1):
                perimeter = test + test + 1 + test + 1
                ratio = perimeter / matches[-1]
                matches.append(perimeter)
                test = int(test * ratio)
                interval = 1
                continue
        else:
            h2 = heron_area_squared(test, test, test + 1)
            if is_perfect_square(h2):
                perimeter = test + test + test + 1
                # ratio = perimeter / matches[-1]
                matches.append(perimeter)
                test = int(test * ratio)
                interval = 1
                continue
        test += interval * direction
        interval += 1
        direction *= -1
    return sum(matches[:-1])
Exemplo n.º 2
0
def test(limit):
    a = 1
    while a < limit:
        if a % 2 == 0:
            h1 = heron_area_squared(a, a + 1, a + 1)
            if is_perfect_square(h1):
                print(a, a + 1, a + 1, h1, (3 * a + 2) / 2)
        else:
            h2 = heron_area_squared(a, a, a + 1)
            if is_perfect_square(h2):
                print(a, a, a + 1, h2, (3 * a + 1) / 2)
        a += 1
Exemplo n.º 3
0
def frac_decompose(n, p=None):
    if is_perfect_square(n): return 0
    array = [int_sqrt(n)]
    p = p or int_sqrt(n) * 2 + 5
    s = square_root(n, p)
    br = int_sqrt(n) * 2 + 5
    while True:
        inc = 1
        i = 1
        while True:
            if i > br:
                return frac_decompose(n, p * 2)
            array.append(i + inc)
            x = long_div(*frac(array), p)
            array.pop()
            array.append(i)
            y = long_div(*frac(array), p)
            if (s > x) ^ (s > y):
                if inc > 1:
                    inc = 1
                    array.pop()
                    continue
                else:
                    break
            array.pop()
            i += inc
            if i == 4 and inc == 1:
                inc = 10
        if array[-1] == array[0] * 2:
            print(array)
            return len(array) - 1
Exemplo n.º 4
0
def test4(limit):
    matches = [16]
    side1 = 6
    direction = 1
    ratio = 2 + sqrt(3)
    while matches[-1] < limit:
        side2 = side1 if side1 % 2 == 1 else side1 + 1
        area_squared = heron_area_squared(side1, side2, side1 + 1)
        print(area_squared)
        if is_perfect_square(area_squared):
            perimeter = side1 + side2 + side1 + 1
            matches.append(perimeter)
            side1 = int(side1 * ratio)
            direction *= -1
            continue
        side1 += direction
    return sum(matches[:-1])
Exemplo n.º 5
0
def is_possibly_odd_period(n, evens):
    if is_perfect_square(n - 1): return True
    prime_factors = set()
    divisor = 3
    while not n % 2:
        if 2 in prime_factors: return False
        prime_factors.add(2)
        n //= 2
    while divisor * divisor <= n:
        if not n % divisor:
            if divisor in evens: return False
            prime_factors.add(divisor)
            n //= divisor
        else:
            divisor += 2
    if n in evens: return False
    return True
Exemplo n.º 6
0
from math import sqrt, factorial
from itertools import combinations
from simplemath import is_perfect_square, int_sqrt

c = lambda n, r: factorial(n) // (factorial(r) * factorial(n - r))
is_triple = lambda a, b: is_perfect_square(a**2 + b**2)


def euclid(m, n):
    a = m**2 - n**2
    b = 2 * m * n
    c = m**2 + n**2
    return (a, b, c)


def euclid_gen(max_legs):
    limit = int_sqrt(max_legs // 2) + 1
    for i in range(1, limit):
        for j in range(i + 1, limit):
            yield euclid(j, i)


def run(m):
    total = 0
    for triple in euclid_gen(3 * m):
        total += score(sorted(triple), m)
    return total


# 4x^2 > 3*lim
# x^2 == 1.5*lim