Exemplo n.º 1
0
def run_example():
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(xnominal)
    pso.set_bounds(2)
    pso.set_speed(-.25, .25)
    pso.run(25, 100)
    display(pso.best)
Exemplo n.º 2
0
def run_example():
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(xnominal)
    pso.set_bounds(lower=lower, upper=upper)
    pso.set_speed(-.25, .25)
    pso.run(25, 200)
    display(pso.best)
    np.save('calibrated_pars_pso1', pso.best)
Exemplo n.º 3
0
    def __call__(self, pso_kwargs=None,
                 cost_type='norm_logpdf', custom_cost=None):
        """Call the SwarmIt instance to construct to instance of the NestedSampling object.

        Args:
                pso_kwargs (dict): Dictionary of any additional optional keyword
                    arguments to pass to the PSO object constructor.
                    Defaults to dict().
                cost_type (str): Define the type of cost estimator
                    to use. Options are 'norm_logpdf'=>Compute the cost using
                    the normal distribution estimator, 'mse'=>Compute the
                    cost using the negative mean squared error estimator,
                    'sse'=>Compute the cost using the negative sum of
                     squared errors estimator. Defaults to 'norm_logpdf'.

        Returns:
            type: Description of returned object.

        """
        if pso_kwargs is None:
            pso_kwargs = dict()
        # self.ns_version = ns_version
        self._pso_kwargs = pso_kwargs
        #population_size = pso_population_size
        if cost_type == 'mse':
            cost = self.mse_cost
        elif cost_type == 'sse':
            cost = self.sse_cost
        elif (cost_type == 'custom') and (custom_cost is not None):
            self.set_custom_cost(custom_cost)
            cost = self.custom_cost
        else:
            cost = self.norm_logpdf_cost

        # Construct the PSO
        if 'save_sampled' not in pso_kwargs.keys():
            pso_kwargs['save_sampled'] = False
        if 'verbose' not in pso_kwargs.keys():
            pso_kwargs['verbose'] = False
        pso = PSO(**pso_kwargs)
        pso.set_start_position(self._starting_position)
        pso.set_cost_function(cost)
        pso.set_bounds(lower=self._lower, upper=self._upper)
        pso.set_speed(-.25, .25)
        return pso
def run_example():
    # Runs the cost function to calculate error between model and data
    print("Error at start = {}".format(likelihood(starting_position)[0]))
    # Displays the model with defaul positions
    display(starting_position, save_name='starting_position')

    # create PSO object
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(starting_position)
    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-.25, .25)

    pso.run(num_particles=25, num_iterations=50, stop_threshold=1e-5)
    display(pso.best, save_name='best_fit')
    np.savetxt("pso_fit_for_model.csv", pso.best)
Exemplo n.º 5
0
def run_example():
    # Runs the cost function to calculate error between model and data
    print("Error at start = {}".format(likelihood(starting_position)[0]))
    # Displays the model with defaul positions
    display(starting_position, save_name='starting_position')

    # create PSO object
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(starting_position)
    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-.25, .25)

    pso.run(num_particles=25, num_iterations=50, stop_threshold=1e-5)
    display(pso.best, save_name='best_fit')
    np.savetxt("pso_fit_for_model.csv", pso.best)
Exemplo n.º 6
0
def run_pso(run, iterations, bd):
    pso = PSO(save_sampled=False,
              verbose=True,
              shrink_steps=False,
              num_proc=14)
    pso.set_cost_function(costfunction)
    pso.set_start_position(starting_position)
    pso.set_bounds(bd)
    pso.set_speed(-.1, .1)

    pso.run(num_particles=200, num_iterations=iterations, stop_threshold=1e-5)
    #print('best pos: ', pso.best.pos)
    print('history ', pso.history)
    print('run ', run)
    print('fit ', pso.best.fitness)
    print('all fitness ', pso.values)
    np.savetxt("H841_params_" + run + ".txt", 10**pso.history, delimiter=",")
    np.savetxt("H841_fit_" + run + ".txt", pso.values, delimiter=",")
Exemplo n.º 7
0
def run_example_multiple():
    best_pars = np.zeros((100, len(model.parameters)))
    counter = 0
    for i in range(100):
        pso = PSO(save_sampled=False, verbose=False, num_proc=4)
        pso.set_cost_function(likelihood)
        nominal_random = xnominal + np.random.uniform(-1, 1, len(xnominal))
        pso.set_start_position(nominal_random)
        pso.set_bounds(2.5)
        pso.set_speed(-.25, .25)
        pso.run(25, 100)
        if pso.best.fitness.values[0] < 0.066:
            Y = np.copy(pso.best)
            param_values[rates_of_interest_mask] = 10**Y
            best_pars[counter] = param_values
            counter += 1
        print(i, counter)

        # display(pso.best)
    np.save('jnk3_noASK1_ncalibrated_pars_1h', best_pars)

# USER-Set: must appropriately update cost function!
def cost(position):
    Y = np.copy(position)
    param_values[calibrate_mask] = 10**Y
    sim = solver.run(param_values=param_values).all
    logp_data = np.sum(like_data.logpdf(sim['observable']))
    if np.isnan(logp_data):
        logp_data = np.inf
    return -logp_data,


# Setup the particle swarm optimization run

# Set the number of particles in the swarm.
num_particles = 25
# Set the number of iterations for PSO run.
num_iterations = 50
# Construct the optimizer
pso = PSO(save_sampled=False, verbose=True, num_procs=1)
pso.set_cost_function(cost)
starting_position = swarm_param.centers()
pso.set_start_position(starting_position)
pso.set_bounds(lower=swarm_param.lower(), upper=swarm_param.upper())
# sets maximum speed that a particle can travel
pso.set_speed(-.25, .25)
# run it
pso.run(num_particles, num_iterations, stop_threshold=1e-5)
print("Best parameters: ", pso.best)