def test_add_solvent(self):
        """Test using simtk.opnmm.app.Modeller to add solvent to a small molecule parameterized by template generator"""
        # Select a molecule to add solvent around
        from simtk.openmm.app import NoCutoff, Modeller
        from simtk import unit
        molecule = self.molecules[0]
        openmm_topology = molecule.to_topology().to_openmm()
        openmm_positions = molecule.conformers[0]
        # Try adding solvent without residue template generator; this will fail
        from simtk.openmm.app import ForceField
        forcefield = ForceField('tip3p.xml')
        # Add solvent to a system containing a small molecule
        modeller = Modeller(openmm_topology, openmm_positions)
        try:
            modeller.addSolvent(forcefield, model='tip3p', padding=6.0*unit.angstroms)
        except ValueError as e:
            pass

        # Create a generator that knows about a few molecules
        generator = self.TEMPLATE_GENERATOR(molecules=self.molecules)
        # Add to the forcefield object
        forcefield.registerTemplateGenerator(generator.generator)
        # Add solvent to a system containing a small molecule
        # This should succeed
        modeller.addSolvent(forcefield, model='tip3p', padding=6.0*unit.angstroms)
Exemplo n.º 2
0
    def _prep_sim(self, coords, external_forces=[]):

        try:
            from simtk.openmm import Platform, LangevinIntegrator, Vec3
            from simtk.openmm.app import Modeller, ForceField, \
                CutoffNonPeriodic, PME, Simulation, HBonds
            from simtk.unit import angstrom, nanometers, picosecond, \
                kelvin, Quantity, molar
        except ImportError:
            raise ImportError(
                'Please install PDBFixer and OpenMM in order to use ClustENM.')

        positions = Quantity([Vec3(*xyz) for xyz in coords], angstrom)
        modeller = Modeller(self._topology, positions)

        if self._sol == 'imp':
            forcefield = ForceField(*self._force_field)

            system = forcefield.createSystem(modeller.topology,
                                             nonbondedMethod=CutoffNonPeriodic,
                                             nonbondedCutoff=1.0 * nanometers,
                                             constraints=HBonds)

        if self._sol == 'exp':
            forcefield = ForceField(*self._force_field)

            modeller.addSolvent(forcefield,
                                padding=self._padding * nanometers,
                                ionicStrength=self._ionicStrength * molar)

            system = forcefield.createSystem(modeller.topology,
                                             nonbondedMethod=PME,
                                             nonbondedCutoff=1.0 * nanometers,
                                             constraints=HBonds)

        for force in external_forces:
            system.addForce(force)

        integrator = LangevinIntegrator(self._temp * kelvin, 1 / picosecond,
                                        0.002 * picosecond)

        # precision could be mixed, but single is okay.
        platform = self._platform if self._platform is None else Platform.getPlatformByName(
            self._platform)
        properties = None

        if self._platform is None:
            properties = {'Precision': 'single'}
        elif self._platform in ['CUDA', 'OpenCL']:
            properties = {'Precision': 'single'}

        simulation = Simulation(modeller.topology, system, integrator,
                                platform, properties)

        simulation.context.setPositions(modeller.positions)

        return simulation
'''
ligand_mol = Molecule.from_file('ethanol.sdf', file_format='sdf')

forcefield_kwargs = {'constraints': app.HBonds, 'rigidWater': True, 'removeCMMotion': True, 'hydrogenMass': 4 * unit.amu }

system_generator = SystemGenerator(
    forcefields=['amber/ff14SB.xml', 'amber/tip4pew_standard.xml'],
    small_molecule_forcefield='gaff-2.11',
    molecules=[ligand_mol],
    forcefield_kwargs=forcefield_kwargs)

ligand_pdb = PDBFile('ethanol.pdb')

modeller = Modeller(ligand_pdb.topology, ligand_pdb.positions)

modeller.addSolvent(system_generator.forcefield, model='tip4pew', padding=12.0 * unit.angstroms)

system = system_generator.forcefield.createSystem(modeller.topology, nonbondedMethod=PME,
        nonbondedCutoff=9.0 * unit.angstroms, constraints=HBonds)

'''
---FINISHED SYSTEM PREPARATION---
'''

'''
---ALCHEMICAL CONFIGURATION---
    define solute indexes, set up the alchemical region + factory, and specify steric/electrostatic lambda coupling for solvation
'''
# determines solute indexes
solute_indexes = collect_solute_indexes(modeller.topology)
Exemplo n.º 4
0
        io_w_no_h.set_structure(structure)
        io_w_no_h.save(f'{pdbid}_chain{chain}.pdb', ChainSelect(chain))

    print("The fixed.pdb file with selected chain is ready.")
    # load pdb to Modeller
    pdb = PDBFile(f'{pdbid}_chain{chain}.pdb')
    molecule = Modeller(pdb.topology, pdb.positions)
    print("Done loading pdb to Modeller.")
    # load force field
    forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
    print("Done loading force field.")
    print("OpenMM version:", version.version)
    # prepare system
    molecule.addSolvent(forcefield,
                        padding=12 * unit.angstrom,
                        model='tip3p',
                        positiveIon='Na+',
                        negativeIon='Cl-',
                        ionicStrength=0 * unit.molar)
    print("Done adding solvent.")
    PDBxFile.writeFile(molecule.topology,
                       molecule.positions,
                       open(f'{pdbid}_chain{chain}.pdbx', 'w'),
                       keepIds=True)
    PDBFile.writeFile(molecule.topology,
                      molecule.positions,
                      open(f'{pdbid}_chain{chain}_solvated.pdb', 'w'),
                      keepIds=True)
    print("Done outputing pdbx and solvated pdb.")
    system = forcefield.createSystem(molecule.topology,
                                     nonbondedMethod=PME,
                                     rigidWater=True,
Exemplo n.º 5
0
class MoleculeUtil(object):
    """
    A class for managing a molecule defined by a PDB file
    """
    np.random.seed(20)

    def __init__(self, pdb_path, offset_size=2):
        # OpenMM init
        self.pdb_path = pdb_path
        self.pdb = PDBFile(self.pdb_path)
        self.forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
        self.modeller = Modeller(self.pdb.topology, self.pdb.positions)

        # Remove any water that might be present in the PDB file
        self.modeller.deleteWater()

        # Add any hydrogens not present
        self.modeller.addHydrogens(self.forcefield)
        self.system = self.forcefield.createSystem(self.modeller.topology,
                                                   nonbondedMethod=PME,
                                                   nonbondedCutoff=1 *
                                                   u.nanometer,
                                                   constraints=HBonds)
        self.integrator = LangevinIntegrator(300 * u.kelvin, 1 / u.picosecond,
                                             0.002 * u.picoseconds)
        self.simulation = Simulation(self.modeller.topology, self.system,
                                     self.integrator)
        self.pdb_positions = self.modeller.getPositions()

        # Initialize bond dictionary and positions for chemcoord
        self.cc_bonds = {}
        self.offset_size = offset_size
        self._init_pdb_bonds()
        self.set_cc_positions(self.pdb_positions)

        # Perform initial minimization, which updates self.pdb_positions
        min_energy, min_positions = self.run_simulation()

        # Reset the positions after the minimization
        self.set_cc_positions(self.pdb_positions)
        self.torsion_indices = self._get_torsion_indices()
        self.starting_positions = min_positions
        self.starting_torsions = np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T
        self.seed_offsets()

    def _add_backbone_restraint(self):
        # https://github.com/ParmEd/ParmEd/wiki/OpenMM-Tricks-and-Recipes#positional-restraints
        positions = self.modeller.getPositions()
        force = CustomExternalForce('k*((x-x0)^2+(y-y0)^2+(z-z0)^2)')
        force.addGlobalParameter(
            'k', 5.0 * u.kilocalories_per_mole / u.angstroms**2)
        force.addPerParticleParameter('x0')
        force.addPerParticleParameter('y0')
        force.addPerParticleParameter('z0')

        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                coord = positions[index]
                force.addParticle(index, coord.value_in_unit(u.nanometers))

        self.restraint_force_id = self.system.addForce(force)

    def _remove_backbone_restraint(self):
        self.system.removeForce(self.restraint_force_id)

    def _fix_backbone(self):
        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                self.system.setParticleMass(index, 0)

    def seed_offsets(self):
        self.offsets = np.random.choice([0, 0, -1, 1],
                                        self.starting_torsions.shape)

    def get_torsions(self):
        return np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T

    def set_torsions(self, new_torsions):
        self.zmat.safe_loc[self.torsion_indices[:, 0],
                           'dihedral'] = new_torsions[:, 0]
        self.zmat.safe_loc[self.torsion_indices[:, 1],
                           'dihedral'] = new_torsions[:, 1]

    def get_offset_torsions(self, scale_factor):
        """
        Calculates and returns new torsion angles based on randomly generated
        offsets.

        Args:
            scale_factor: the relative scale of the offset relative to
                          self.offset_size
        Returns:
            The new torsion angles
        """
        total_offset = self.offset_size * scale_factor
        new_torsions = np.zeros(shape=self.starting_torsions.shape)
        new_torsions[:, 0] = self.starting_torsions[:, 0] + \
            (self.offsets[:, 0] * total_offset)
        new_torsions[:, 1] = self.starting_torsions[:, 1] + \
            (self.offsets[:, 1] * total_offset)
        return new_torsions

    def run_simulation(self):
        """
        Run a simulation to calculate the current configuration's energy level.
        Note that the atoms will likely move somewhat during the calculation,
        since energy minimization is used.

        Returns:
            A tuple of the form (potential_energy, updated_positions)
        """
        # Delete solvent that's based on previous positions
        cartesian = self.zmat.get_cartesian().sort_index()
        self.simulation.context.setPositions([
            Vec3(x, y, z)
            for x, y, z in zip(cartesian['x'], cartesian['y'], cartesian['z'])
        ])

        # self._add_backbone_restraint()
        # self._fix_backbone()

        self.modeller.addSolvent(self.forcefield, padding=1.0 * u.nanometer)
        self.simulation.minimizeEnergy(maxIterations=200)
        state = self.simulation.context.getState(getEnergy=True,
                                                 getPositions=True)
        p_energy = state.getPotentialEnergy()
        positions = state.getPositions(asNumpy=True)

        # Clean up - remove solvent and backbone restraint (for next iteration)
        self.modeller.deleteWater()

        # self._remove_backbone_restraint()

        return p_energy, positions

    def _init_pdb_bonds(self):
        """Construct a dictionary describing the PDB's bonds for chemcoord use"""
        for index in range(self.modeller.topology.getNumAtoms()):
            self.cc_bonds[index] = set()

        for bond in self.modeller.topology.bonds():
            self.cc_bonds[bond[0].index].add(bond[1].index)
            self.cc_bonds[bond[1].index].add(bond[0].index)

    def set_cc_positions(self, positions):
        """
        Calculates the zmat from an OpenMM modeller

        Args:
            positions (list): A list 
        """
        cc_df = self._get_cartesian_df(positions)
        self.cartesian = cc.Cartesian(cc_df)
        self.cartesian.set_bonds(self.cc_bonds)
        self.cartesian._give_val_sorted_bond_dict(use_lookup=True)
        self.zmat = self.cartesian.get_zmat(use_lookup=True)

    def _get_cartesian_df(self, positions):
        cc_positions = np.zeros((3, self.modeller.topology.getNumAtoms()))
        atom_names = []
        for index, atom in enumerate(self.modeller.topology.atoms()):
            pos = positions[index] / u.nanometer
            atom_names.append(atom.name)
            cc_positions[:, index] = pos

        cc_df = pd.DataFrame({
            'atom': atom_names,
            'x': cc_positions[0, :],
            'y': cc_positions[1, :],
            'z': cc_positions[2, :]
        })
        return cc_df

    def _get_torsion_indices(self):
        """
        Calculates indices into the zmatrix which correspond to phi
        and psi angles.

        Args:
            zmat: the zmatrix specifying the molecule
        Returns:
            a numpy.array, with first column as phi_indices, second column
            as psi_indices
        """
        phi_indices = []
        psi_indices = []

        for i in range(len(self.zmat.index)):
            b_index = self.zmat.loc[i, 'b']
            a_index = self.zmat.loc[i, 'a']
            d_index = self.zmat.loc[i, 'd']

            # If this molecule references a magic string (origin, e_x, e_y, e_z, etc)
            if isinstance(b_index, str) or isinstance(
                    a_index, str) or isinstance(d_index, str):
                continue

            # Psi angles
            if (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'C') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'C') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'N') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'N') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

        return np.array([phi_indices, psi_indices]).T
# reading the ligand gives lots of warnings about "duplicate atom" but this seems incorrect
print('Reading ligand')
ligand_pdb = PDBFile('ligand1.pdb')

print('Preparing complex')
modeller = Modeller(protein_pdb.topology, protein_pdb.positions)
print('System has %d atoms' % modeller.topology.getNumAtoms())
modeller.add(ligand_pdb.topology, ligand_pdb.positions)
print('System has %d atoms' % modeller.topology.getNumAtoms())

box_vectors = unit.Quantity(np.diag([100, 100, 100]), unit.angstrom)
modeller.topology.setPeriodicBoxVectors(box_vectors)

# Solvate
print('Adding solvent...')
modeller.addSolvent(system_generator.forcefield,
                    model='tip3p')  #, padding=5.0*unit.angstroms)
print('System has %d atoms' % modeller.topology.getNumAtoms())

PDBFile.writeFile(modeller.topology, modeller.positions,
                  open('complex1.pdb', 'w'))

complex_pdb = PDBFile('complex1.pdb')

system = system_generator.create_system(complex_pdb.topology,
                                        molecules=ligand_mol)
integrator = LangevinIntegrator(300 * unit.kelvin, 1 / unit.picosecond,
                                0.002 * unit.picoseconds)
print('Uses Periodic box:', system.usesPeriodicBoundaryConditions())
print('Default Periodic box:', system.getDefaultPeriodicBoxVectors())

simulation = Simulation(complex_pdb.topology,
Exemplo n.º 7
0
# Modeller needs topology and positions. Lots of trial and error found that this is what works to get these from
# an openforcefield Molecule object that was created from a RDKit molecule.
# The topology part is described in the openforcefield API but the positions part grabs the first (and only)
# conformer and passes it to Modeller. It works. Don't ask why!
if len(other_mols) != 0:
    for other_mol in other_mols:
        modeller.add(other_mol.to_topology().to_openmm(),
                     other_mol.conformers[0])
    #modeller.add(ligand_mol.to_topology().to_openmm(), ligand_mol.conformers[0])

# Generate ligand with solvent for FEP
if opt.ligand:
    modeller_org = Modeller(ligand_mol.to_topology().to_openmm(),
                            ligand_mol.conformers[0])
    modeller_org.addSolvent(system_generator.forcefield,
                            model='tip3p',
                            ionicStrength=0.1 * unit.molar,
                            padding=10.0 * unit.angstroms)
    system_org = system_generator.create_system(modeller_org.topology,
                                                molecules=ligand_mol)
    system_org.addForce(
        openmm.MonteCarloBarostat(1 * unit.atmospheres, opt.temp * unit.kelvin,
                                  25))

print('System has %d atoms' % modeller.topology.getNumAtoms())

# Solvate
print('Adding solvent...')
# we use the 'padding' option to define the periodic box. The PDB file does not contain any
# unit cell information so we just create a box that has a 10A padding around the complex.
#modeller.addSolvent(system_generator.forcefield, model='tip3p', ionicStrength=0.1*unit.molar, padding=10.0*unit.angstroms)
modeller.addSolvent(system_generator.forcefield,