Exemplo n.º 1
0
def updateIndividualByBSO(robot_amount, robotIndex, allFrontiers,
                          map_grid_matrix, robotlocation, centerfrontiers,
                          total_weights):
    prob_one_cluster = 0.5  # 0.8
    frontiers_1 = allFrontiers[robotIndex]
    # print("robotIndex", robotIndex)

    # replace cluster center by at randomly generated center TODO
    # if random.random() < 0.2:
    #     cenIdx = math.ceil(random.random() * (len(allFrontiers) -1) )
    #     centerfrontiers[cenIdx] =

    for i in range(len(frontiers_1)):
        r_1 = random.random()
        indi_temp = Frontier(0, 0, 0)
        if r_1 < prob_one_cluster:  # update from self cluster
            if random.random() < 0.4:
                indi_temp = centerfrontiers[robotIndex]
            else:
                # math.ceil(random.random() * (len(frontiers)-1))
                indi_1 = resampling(frontiers_1, total_weights[robotIndex])
                indi_temp = frontiers_1[indi_1]
            indi_temp.weight = calculateDistance(map_grid_matrix, indi_temp.x,
                                                 indi_temp.y, robotlocation)
            if (frontiers_1[i].weight < indi_temp.weight):
                frontiers_1[i] = indi_temp
                calculate_frontiers(frontiers_1, robotIndex, centerfrontiers,
                                    total_weights)
        else:  # update throught other cluster
            cluster_2 = robotIndex
            while cluster_2 != robotIndex:
                cluster_2 = math.ceil(random.random() * (robot_amount - 1))
            # print("cluster_2:", cluster_2)
            frontiers_2 = allFrontiers[cluster_2]
            # math.ceil(random.random() * (len(frontiers_2)-1))
            indi_2 = resampling(frontiers_2, total_weights[cluster_2])
            # math.ceil(random.random() * (len(frontiers)-1))
            indi_1 = resampling(frontiers_1, total_weights[robotIndex])
            if random.random() < 0.5:
                # indi_temp = pick_from_two_cluster(
                #     centerfrontiers[robotIndex], centerfrontiers[cluster_2], robotlocation)
                indi_temp = pick_from_two_cluster(centerfrontiers[robotIndex],
                                                  centerfrontiers[cluster_2],
                                                  robotlocation,
                                                  map_grid_matrix)
            else:
                # indi_temp = pick_from_two_cluster(
                #     frontiers_1[indi_1], frontiers_2[indi_2], robotlocation)
                indi_temp = pick_from_two_cluster(frontiers_1[indi_1],
                                                  frontiers_2[indi_2],
                                                  robotlocation,
                                                  map_grid_matrix)
            # print("robotlocation", robotlocation.x, robotlocation.y)
            indi_temp.weight = calculateDistance(map_grid_matrix, indi_temp.x,
                                                 indi_temp.y, robotlocation)
            # if(frontiers_1[i].weight < indi_temp.weight):
            frontiers_1[i] = indi_temp
            calculate_frontiers(frontiers_1, robotIndex, centerfrontiers,
                                total_weights)
    return frontiers_1
Exemplo n.º 2
0
def findFrontiers(map_grid_matrix, robotlocation):
    frontiers = []
    for x in range(len(map_grid_matrix)):
        for y in range(len(map_grid_matrix[0])):
            if map_grid_matrix[x][y] == EXPLORATED_BOUND:
                m_frontier = Frontier(x, y, calculateDistance(map_grid_matrix, x, y, robotlocation))
                frontiers.append(m_frontier)
    # print("frontiers:", len(frontiers))
    frontiers = frontierFilter(frontiers)
    # print("newfrontiers:", len(frontiers))
    return frontiers
Exemplo n.º 3
0
def calculate_frontiers(frontiers, index, centerfrontiers, total_weights):
    if len(centerfrontiers) <= index:
        centerfrontiers.append(Frontier(0, 0, 0))
    if len(total_weights) <= index:
        total_weights.append(0)
    total_weight = 0
    centerfrontier = frontiers[0]
    for i in range(len(frontiers)):
        total_weight += frontiers[i].weight
        if centerfrontiers[index].weight < frontiers[i].weight:
            centerfrontier = frontiers[i]
    centerfrontiers[index] = centerfrontier
    total_weights[index] = total_weight
Exemplo n.º 4
0
def pick_from_two_cluster(frontier_W_1, frontier_W_2, robotlocation_W,
                          map_grid_matrix):
    reject_distance = 5

    # calculate the distance betweem two frontiers
    ff_distance = math.hypot((frontier_W_1.x - frontier_W_2.x),
                             (frontier_W_1.y - frontier_W_2.y))
    # print("ff_distance:", ff_distance)

    # determine the search distance
    if ff_distance < reject_distance:
        # y(x) = 2Lr/(x+Lr)
        ff_distance = (2 * reject_distance**2) / (ff_distance +
                                                  reject_distance)

        # search better frontier candidates, based on the distance
        candidate_frontiers = []
        for i in range(int(frontier_W_1.x - ff_distance),
                       int(frontier_W_1.x + ff_distance)):
            # out of range
            if i < 0 or i > 19:
                continue
            for j in range(int(frontier_W_1.y - ff_distance),
                           int(frontier_W_1.y + ff_distance)):
                # out of range
                if i < 0 or j > 39:
                    continue
                if (map_grid_matrix[i][j] == EXPLORATED_BOUND):

                    # g(a), this function can be changed by user
                    weight = math.hypot((i - frontier_W_2.x),
                                        (j - frontier_W_2.y))
                    frontier = Frontier(i, j, weight)
                    candidate_frontiers.append(frontier)

        # select the best candidate
        # candidate_frontiers.sort(key=lambda x:x[0], reverse=True)
        indi_temp_W = candidate_frontiers.pop()
        for i in range(len(candidate_frontiers)):
            # print("candidate_frontiers[i].weight:", candidate_frontiers[i].weight)
            if indi_temp_W.weight < candidate_frontiers[i].weight:
                indi_temp_W = candidate_frontiers[i]

        # print("max.weight:", indi_temp_W.weight)
        return indi_temp_W
    else:
        ff_distance = ff_distance
        return frontier_W_1