Exemplo n.º 1
0
	def extractFeatures(self, tokken):
		import sinatraFilter as sF;
		import numpy as np;
		filterBox = sF.sinatraFiltersBox();
		wS = int(len(tokken) / 10);
		featureVector = list();
		featureBox = {};
		featureBox['mean'] = np.mean(tokken);
		featureBox['std'] = np.std(tokken);
		featureBox['len'] = len(tokken)
		featureBox['meanPositive'] = np.mean(tokken[tokken > 0]);
		featureBox['meanNegative'] = np.mean(tokken[tokken < 0]);
		x, featureBox['XmaxFilter'] = filterBox.filterMaxInWindow(tokken, wS);
		x, featureBox['XsoftMaxFilter'] = filterBox.softenedMaxWindow(tokken,wS);
		x, featureBox['XmeanLogAvWindow'] = filterBox.sumAbsWindow(tokken,wS);
		for fkeys, feature in sorted(featureBox.items()):
			if fkeys[0]=='X':
				for intIter in feature:
					featureVector.append(intIter);
			else:
				featureVector.append(feature);
		return featureVector;
Exemplo n.º 2
0
	def segmentate(self, aD):
		#
		#	segmentate allows the Front End to find which are the pieces of the
		#	speech.
		#		1 - Clean the sound. We guess that high frequency
		#			sounds are not important for the accent. So,
		#			we need to perform a fourier transform, remove
		#			the high frequency terms, and come back to period through
		#			an inverse fourier transform.
		#		2 - Perform the derivatives of the amplitude. This is not a
		#			a trivial problem, since the spectrum is not regular, and
		#			differents minimums and maximums can be found. An approach
		#			could be to split the sound in intervals and perform the
		#			derivatives only with the maximum values of each interval.
		#
		#
		#	coeffCleaning : treshold under which fourier transformed frequencies
		#					are removed
		#	wS	: window-size
		import sinatraIO;
		import sinatraFilter;
		import numpy as np;
		filterBox = sinatraFilter.sinatraFiltersBox();
		coeffCleaning = 1.5;
		wS = 800;
		rowL = 10000;
		print("reading {0}".format(aD.getName()));
		self.normalize(aD);
		aD = aD.getAudio();
		print("\tremoving high frequencies");
		splitNumber = int(len(aD)/wS);
		aDTransformed = np.fft.fft(aD);
		meanADTransformed = np.mean(np.absolute(aDTransformed));
		aDTransformed[aDTransformed < coeffCleaning*meanADTransformed] = 0;
		aDTransformed[20000:] = 0;
		aDClean = np.fft.ifft(aDTransformed);
		aDClean = np.real(aDClean);
		#aDClean = aD;
		print("\tfiltering");
		#y,z,n = filterBox.entropyInWindow(aDClean, 750);
		#aDClean = aDClean*(n>=1);
		aCY = np.zeros(splitNumber); aCX = np.zeros(splitNumber);
		fD = np.zeros(splitNumber-2); sD = np.zeros(splitNumber-2);
		aCX, aCY = filterBox.filterMaxInWindow(aDClean, wS);
		aCY = aCY ** 2;
		print("\tprocessing first and second order derivatives");
		for derIter in range(1, splitNumber-2):
			fD[derIter] = (aCY[derIter+1]-aCY[derIter-1])/2;
			sD[derIter] = (1/4)*(aCY[derIter + 1] + aCY[derIter - 1] - 2*aCY[derIter]);
		print("\tsegmentating");
		statusMin = 0;
		statusMax = 0;
		cutPoints = [0, 0];
		rowControl = 1;
		matrixX = np.zeros(35);
		testArray = np.zeros(2);
		for sIter in range(2, splitNumber-3):
			if (fD[sIter]*fD[sIter+1]) <= 0:
				if (sD[sIter]+sD[sIter + 1]) > 0:
					cutPoints[statusMin]=aCX[sIter];
					statusMin = statusMin + 1;
				else:
					statusMax = 1;
			if (statusMin == 2) and (statusMax == 1):
				statusMin = 1;
				statusMax = 0;
				rowX = np.zeros(rowL);
				tokkenL = int(cutPoints[1]-cutPoints[0] + 1);
				if (tokkenL > 500) and (tokkenL < rowL):
					rowX[1:tokkenL] = aDClean[int(cutPoints[0]):int(cutPoints[1])];
					rowX = self.extractFeatures(rowX);
					tempTestArray = testArray;
					rowControl = rowControl + 1;
					testArray = np.zeros((rowControl, 2));
					testArray[0:(rowControl-1),:] = tempTestArray;
					testArray[rowControl-1, 0] = cutPoints[0];
					testArray[rowControl-1, 1] = cutPoints[1];
					tempMatrixX = matrixX;
					matrixX = np.zeros((rowControl, 35))
					matrixX[0:(rowControl - 1), :] = tempMatrixX;
					matrixX[(rowControl - 1), :] = rowX;
				cutPoints[0] = cutPoints[1];
		print("task completed");
		matrixX = matrixX[1:,:];
		testArray = testArray[1:,:];
		return matrixX, testArray, (rowControl - 1);
Exemplo n.º 3
0
#!/home/charizard/anaconda3/bin/ipython3
# Bruno Cuevas Zuviria
# Sinatra. Exersice 6.
#
#	Modules
#
import sys
import numpy as np
import sinatraFrontEnd as sFE
import sinatraFilter as sF
import sinatraAudio as sA
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
import scipy.stats as ss
filter = sF.sinatraFiltersBox()
#
#	Input
#
print("reading...")
filepath = sys.argv[1]
freq, audioFile = read(filepath)
print("read!")
#
#	Segmentation
#
print("segmentation...")
try:
    audioFile = audioFile[:, 0]
except IndexError:
    pass
audioFile = (audioFile - np.mean(audioFile)) / np.std(audioFile)
Exemplo n.º 4
0
 def segmentate(self, aD):
     import sinatraIO
     import sinatraFilter
     import numpy as np
     filterBox = sinatraFilter.sinatraFiltersBox()
     coeffCleaning = 1.5
     wS = 700
     rowL = 10000
     rowControl = 1
     print("reading {0}".format(aD.getName()))
     self.normalize(aD)
     aD = aD.getAudio()
     aD = aD[5000:]
     splitNumber = int(len(aD) / wS)
     aDClean = aD
     #	yE,zE : depreciated
     #	nE : contains the -log probability of belonging to the normal
     yE, zE, nE = filterBox.entropyInWindow(aDClean, 1400)
     del yE
     del zE
     statusStart = 0
     matrixX = np.zeros(35)
     testArray = np.zeros(2)
     for sIter in range(2, len(aD) - 3):
         if statusStart == 0 and nE[sIter] >= 14:
             statusStart = 1
             start = int(sIter)
         if statusStart == 1 and nE[sIter] < 14:
             statusStart = 0
             minControl = 0
             maxControl = 0
             end = int(sIter)
             if end - start > 2800:
                 audioTokken = aDClean[start:end]
                 aCX, aCY = filterBox.exponentialDecay(audioTokken, wS)
                 fD = filterBox.firstDerivative(aCY)
                 sD = filterBox.secondDerivative(aCY)
                 cStart = start
                 for tIter in range(len(aCX) - 1):
                     if fD[tIter] * fD[tIter + 1] < 0:
                         if ((sD[tIter] + sD[tIter + 1]) * 0.5) < 0:
                             maxControl = 1
                         else:
                             minControl = 1
                 if (maxControl == 1):
                     cutPoints = np.array([start, end])
                     tokkenLength = cutPoints[1] - cutPoints[0]
                     tokkenRow = np.zeros(tokkenLength)
                     tokkenRow = aDClean[cutPoints[0]:cutPoints[1]]
                     tokkenInfo = self.extractFeatures(tokkenRow)
                     tempTestArray = testArray
                     rowControl = rowControl + 1
                     testArray = np.zeros((rowControl, 2))
                     testArray[0:(rowControl - 1), :] = tempTestArray
                     testArray[rowControl - 1, 0] = start
                     testArray[rowControl - 1, 1] = end
                     tempMatrixX = matrixX
                     matrixX = np.zeros((rowControl, 35))
                     matrixX[0:(rowControl - 1), :] = tempMatrixX
                     matrixX[(rowControl - 1), :] = tokkenInfo
                     maxControl = 0
                     minControl = 0
                     cStart = tIter
             statusStart = 0
     print("task completed")
     try:
         matrixX = matrixX[1:, :]
     except IndexError:
         return [], testArray, 0
     try:
         testArray = testArray[1:, :]
     except IndexError:
         return [], testArray, 0
     testArray = testArray + 5000
     return matrixX, testArray, (rowControl - 1)