Exemplo n.º 1
0
        def _run_training(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1):
            # np api
            (y_1, rm_1, rv_1, bm_1, bv_1) = _np_bn_training(x_0,
                                                            s_0,
                                                            b_0,
                                                            rm_0,
                                                            rv_0,
                                                            momentum=m_0)

            # singa api
            hndl = singa_api.BatchNormHandle(
                m_0,
                tensor.Tensor(device=dev, data=x_0).data)
            (y_2_c, bm_2_c, bv_2_c) = singa_api.CpuBatchNormForwardTraining(
                hndl,
                tensor.Tensor(device=dev, data=x_0).data,
                tensor.Tensor(device=dev, data=s_0).data,
                tensor.Tensor(device=dev, data=b_0).data,
                tensor.Tensor(device=dev, data=rm_0).data,
                tensor.Tensor(device=dev, data=rv_0).data)

            np.testing.assert_array_almost_equal(
                y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=5)
            np.testing.assert_array_almost_equal(
                bm_1, tensor.to_numpy(_cTensor_to_pyTensor(bm_2_c)), decimal=5)
            #print(bv_1)
            #print(tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c)))
            #np.testing.assert_array_almost_equal(
            #    bv_1, tensor.to_numpy(_cTensor_to_pyTensor(bv_2_c)), decimal=3)
            return
Exemplo n.º 2
0
    def test_batchnorm_backward_dnnl(self):
        dev = cpu_dev
        N = 1
        C = 3
        H = 2
        W = 2

        data_shape = [N, C, H, W]
        param_shape = [1, C, 1, 1]
        data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

        x_0 = np.array(data, dtype=np.float32).reshape(data_shape)
        y_0 = np.array(data, dtype=np.float32).reshape(data_shape)
        dy_0 = np.array(data, dtype=np.float32).reshape(data_shape)
        scale_0 = np.array([1] * C, dtype=np.float32).reshape(param_shape)
        bias_0 = np.array([0] * C, dtype=np.float32).reshape(param_shape)

        mean_0 = x_0.mean(axis=(0, 2, 3), keepdims=True)
        var_0 = x_0.var(axis=(0, 2, 3), keepdims=True)

        hndl = singa_api.BatchNormHandle(
            0.1,
            tensor.Tensor(device=dev, data=x_0).data)
        (dx_2_c, _, _) = singa_api.CpuBatchNormBackwardx(
            hndl,
            tensor.Tensor(device=dev, data=y_0).data,
            tensor.Tensor(device=dev, data=dy_0).data,
            tensor.Tensor(device=dev, data=x_0).data,
            tensor.Tensor(device=dev, data=scale_0).data,
            tensor.Tensor(device=dev, data=bias_0).data,
            tensor.Tensor(device=dev, data=mean_0).data,
            tensor.Tensor(device=dev, data=var_0).data,
        )

        dx_truth = np.array([[[[-1.0769e-05, -3.5985e-06],
                               [3.5985e-06, 1.0769e-05]],
                              [[-1.0769e-05, -3.5985e-06],
                               [3.5985e-06, 1.0769e-05]],
                              [[-1.0769e-05, -3.5985e-06],
                               [3.5985e-06, 1.0769e-05]]]])
        np.testing.assert_array_almost_equal(
            tensor.to_numpy(_cTensor_to_pyTensor(dx_2_c)), dx_truth)

        return
Exemplo n.º 3
0
        def _run_testing(x_0, s_0, b_0, rm_0, rv_0, m_0=0.1):
            # np api
            y_1 = _np_bn_testing(x_0, s_0, b_0, rm_0, rv_0, momentum=m_0)

            # singa api
            hndl = singa_api.BatchNormHandle(
                m_0,
                tensor.Tensor(device=dev, data=x_0).data)
            y_2_c = singa_api.CpuBatchNormForwardInference(
                hndl,
                tensor.Tensor(device=dev, data=x_0).data,
                tensor.Tensor(device=dev, data=s_0).data,
                tensor.Tensor(device=dev, data=b_0).data,
                tensor.Tensor(device=dev, data=rm_0).data,
                tensor.Tensor(device=dev, data=rv_0).data)
            #print(y_1)
            #print(tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)))

            np.testing.assert_array_almost_equal(
                y_1, tensor.to_numpy(_cTensor_to_pyTensor(y_2_c)), decimal=5)
            return
Exemplo n.º 4
0
    def test_batch_norm(self):
        x_shape = [2, 2]
        x = singa_wrap.Tensor(x_shape)
        x.CopyFloatDataFromHostPtr([1, 2, 3, 4])

        dy_shape = [2, 2]
        dy = singa_wrap.Tensor(dy_shape)
        dy.CopyFloatDataFromHostPtr([4, 3, 2, 1])

        scale_shape = [2]
        scale = singa_wrap.Tensor(scale_shape)
        scale.CopyFloatDataFromHostPtr([1, 1])

        bias_shape = [2]
        bias = singa_wrap.Tensor(bias_shape)
        bias.CopyFloatDataFromHostPtr([0, 0])

        mean_shape = [2]
        mean = singa_wrap.Tensor(mean_shape)
        mean.CopyFloatDataFromHostPtr([1, 2])
        var = singa_wrap.Tensor(mean_shape)
        var.CopyFloatDataFromHostPtr([1, 2])

        handle = singa_wrap.BatchNormHandle(0.9, x)

        # 2D Forward Inference
        y = singa_wrap.CpuBatchNormForwardInference(handle, x, scale, bias,
                                                    mean, var)
        self.assertListEqual([2, 2], list(y.shape()))

        # 2D Forward Training
        (y, mean_updated, var_updated) = singa_wrap.CpuBatchNormForwardTraining(
            handle, x, scale, bias, mean, var)
        self.assertListEqual([2, 2], list(y.shape()))
        self.assertListEqual([2], list(mean_updated.shape()))
        self.assertListEqual([2], list(var_updated.shape()))

        # 2D Backward dx
        (dx, dscale, dbias) = singa_wrap.CpuBatchNormBackwardx(handle, y, dy, x,
                                                               scale, bias,
                                                               mean_updated,
                                                               var_updated)
        self.assertListEqual([2, 2], list(dx.shape()))
        self.assertListEqual([2], list(dscale.shape()))
        self.assertListEqual([2], list(dbias.shape()))

        # 4D Forward Inference

        x2_shape = [1, 2, 4, 4]
        x2 = singa_wrap.Tensor(x2_shape)
        x2.CopyFloatDataFromHostPtr(
            [0.0736655, 0.0459045, 0.0779517, 0.0771059, 0.0586862, 0.0561263,
             0.0708457, 0.0977273, 0.0405025, -0.170897, 0.0208982, 0.136865,
             -0.0367905, -0.0618205, -0.0103908, -0.0522777, -0.122161,
             -0.025427, -0.0718576, -0.185941, 0.0166533, 0.178679, -0.0576606,
             -0.137817, 0.150676, 0.153442, -0.0929899, -0.148675, -0.112459,
             -0.106284, -0.103074, -0.0668811])

        handle = singa_wrap.BatchNormHandle(0.9, x)
        y2 = singa_wrap.CpuBatchNormForwardInference(handle, x2, scale, bias,
                                                     mean, var)
        self.assertListEqual([1, 2, 4, 4], list(y2.shape()))