Exemplo n.º 1
0
def main():
    """Do main."""
    # Acq model and template sino
    acq_model = pet.AcquisitionModelUsingRayTracingMatrix()
    acq_data = pet.AcquisitionData(sino_file)

    # If norm is present
    asm_norm = None
    if norm_e8_file:
        # create acquisition sensitivity model from ECAT8 normalisation data
        asm_norm = pet.AcquisitionSensitivityModel(norm_e8_file)

    # If attenuation is present
    asm_attn = None
    if attn_im_file:
        attn_image = pet.ImageData(attn_im_file)
        if trans:
            attn_image = resample_attn_image(attn_image)
        asm_attn = pet.AcquisitionSensitivityModel(attn_image, acq_model)
        # temporary fix pending attenuation offset fix in STIR:
        # converting attenuation into 'bin efficiency'
        asm_attn.set_up(acq_data)
        bin_eff = pet.AcquisitionData(acq_data)
        bin_eff.fill(1.0)
        print('applying attenuation (please wait, may take a while)...')
        asm_attn.unnormalise(bin_eff)
        asm_attn = pet.AcquisitionSensitivityModel(bin_eff)

    # Get ASM dependent on attn and/or norm
    if asm_norm and asm_attn:
        print("AcquisitionSensitivityModel contains norm and attenuation...")
        asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
    elif asm_norm:
        print("AcquisitionSensitivityModel contains norm...")
        asm = asm_norm
    elif asm_attn:
        print("AcquisitionSensitivityModel contains attenuation...")
        asm = asm_attn
    else:
        raise ValueError("Need norm and/or attn")

    # only need to project again if normalisation is added
    # (since attenuation has already been projected)
    if asm_norm:
        asm_attn.set_up(acq_data)
        bin_eff = pet.AcquisitionData(acq_data)
        bin_eff.fill(1.0)
        print('getting sinograms for multiplicative factors...')
        asm.set_up(acq_data)
        asm.unnormalise(bin_eff)

    print('writing multiplicative sinogram: ' + outp_file)
    bin_eff.write(outp_file)
Exemplo n.º 2
0
def get_acquisition_model(uMap, templ_sino):
    """Create acquisition model"""
    am = pet.AcquisitionModelUsingRayTracingMatrix()
    am.set_num_tangential_LORs(5)

    # Set up sensitivity due to attenuation
    asm_attn = pet.AcquisitionSensitivityModel(uMap, am)
    asm_attn.set_up(templ_sino)
    bin_eff = pet.AcquisitionData(templ_sino)
    bin_eff.fill(1.0)
    asm_attn.unnormalise(bin_eff)
    asm_attn = pet.AcquisitionSensitivityModel(bin_eff)
    am.set_acquisition_sensitivity(asm_attn)
    am.set_up(templ_sino, uMap)
    return am
Exemplo n.º 3
0
    def setUp(self):
        data_path = os.path.join(examples_data_path('PET'),
                                 'thorax_single_slice')

        image = pet.ImageData(os.path.join(data_path, 'emission.hv'))

        am = pet.AcquisitionModelUsingRayTracingMatrix()
        am.set_num_tangential_LORs(5)
        templ = pet.AcquisitionData(
            os.path.join(data_path, 'template_sinogram.hs'))
        am.set_up(templ, image)
        acquired_data = am.forward(image)

        obj_fun = pet.make_Poisson_loglikelihood(acquired_data)
        obj_fun.set_acquisition_model(am)
        obj_fun.set_up(image)

        self.obj_fun = obj_fun
        self.image = image
Exemplo n.º 4
0
    def setUp(self):

        os.chdir(examples_data_path('PET'))
        #%% copy files to working folder and change directory to where the output files are
        shutil.rmtree('working_folder/thorax_single_slice',True)
        shutil.copytree('thorax_single_slice','working_folder/thorax_single_slice')
        os.chdir('working_folder/thorax_single_slice')


        image = pet.ImageData('emission.hv')

        am = pet.AcquisitionModelUsingRayTracingMatrix()
        am.set_num_tangential_LORs(5)
        templ = pet.AcquisitionData('template_sinogram.hs')
        am.set_up(templ,image)
        acquired_data=am.forward(image)

        obj_fun = pet.make_Poisson_loglikelihood(acquired_data)
        obj_fun.set_acquisition_model(am)
        obj_fun.set_up(image)

        self.obj_fun = obj_fun
        self.image = image
print('Norm data: {}'.format(norm_file))

#%% Create folders for results

path_NAC = working_folder + '/recon/NAC/'
path_sino = working_folder + '/sino/'
path_rando = working_folder + '/rando/'

if not os.path.exists(path_NAC):
    os.makedirs(path_NAC, mode=0o770)
    print('Create Folder: {}'.format(path_NAC))

#%% Settings for reconstruction

# set acq_model
acq_model = Pet.AcquisitionModelUsingRayTracingMatrix()
acq_model.set_num_tangential_LORs(5)

# set recon, OSEM
recon = Pet.OSMAPOSLReconstructor()
num_subsets = 7
num_subiterations = 4
recon.set_num_subsets(num_subsets)
recon.set_num_subiterations(num_subiterations)

# definitions for detector sensitivity modelling
asm_norm = Pet.AcquisitionSensitivityModel(norm_file)
acq_model.set_acquisition_sensitivity(asm_norm)

#%% redirect STIR messages to some files
# you can check these if things go wrong
Exemplo n.º 6
0
def main():
    ##    PET.AcquisitionData.set_storage_scheme('memory')

    # no info printing from the engine, warnings and errors sent to stdout
    msg_red = PET.MessageRedirector()

    # Create a template Acquisition Model
    #acq_template = AcquisitionData('Siemens mMR', 1, 0, 1)
    acq_template = PET.AcquisitionData(
        acq_template_filename)  #q.get_uniform_copy()

    # create the attenuation image
    atten_image = PET.ImageData(acq_template)
    image_size = atten_image.dimensions()
    voxel_size = atten_image.voxel_sizes()

    # create a cylindrical water phantom
    water_cyl = PET.EllipticCylinder()
    water_cyl.set_length(image_size[0] * voxel_size[0])
    water_cyl.set_radii((image_size[1]*voxel_size[1]*0.25, \
                     image_size[2]*voxel_size[2]*0.25))
    water_cyl.set_origin((image_size[0] * voxel_size[0] * 0.5, 0, 0))

    # add the shape to the image
    atten_image.add_shape(water_cyl, scale=9.687E-02)

    # z-pixel coordinate of the xy-crossection to show
    z = int(image_size[0] * 0.5)

    # show the phantom image
    atten_image_array = atten_image.as_array()
    show_2D_array('Attenuation image', atten_image_array[z, :, :])

    # Create the activity image
    act_image = atten_image.clone()
    act_image.fill(0.0)

    # create the activity cylinder
    act_cyl = PET.EllipticCylinder()
    act_cyl.set_length(image_size[0] * voxel_size[0])
    act_cyl.set_radii((image_size[1] * voxel_size[1] * 0.125, \
                         image_size[2] * voxel_size[2] * 0.125))
    act_cyl.set_origin((0, image_size[1] * voxel_size[1] * 0.06, \
                          image_size[2] * voxel_size[2] * 0.06))

    # add the shape to the image
    act_image.add_shape(act_cyl, scale=1)

    # z-pixel coordinate of the xy-crossection to show
    z = int(image_size[0] * 0.5)

    # show the phantom image
    act_image_array = act_image.as_array()
    show_2D_array('Activity image', act_image_array[z, :, :])

    # Create the Single Scatter Simulation model
    sss = PET.SingleScatterSimulator()

    # Set the attenuation image
    sss.set_attenuation_image(atten_image)

    # set-up the scatter simulator
    sss.set_up(acq_template, act_image)
    # Simulate!
    sss_data = sss.forward(act_image)

    # show simulated scatter data
    simulated_scatter_as_array = sss_data.as_array()
    show_2D_array('scatter simulation', simulated_scatter_as_array[0, 0, :, :])

    sss_data.write(output_file)

    ## let's also compute the unscattered counts (at the same low resolution) and compare

    acq_model = PET.AcquisitionModelUsingRayTracingMatrix()
    asm = PET.AcquisitionSensitivityModel(atten_image, acq_model)
    acq_model.set_acquisition_sensitivity(asm)

    acq_model.set_up(acq_template, act_image)
    #unscattered_data = acq_template.get_uniform_copy()
    unscattered_data = acq_model.forward(act_image)
    simulated_unscatter_as_array = unscattered_data.as_array()
    show_2D_array('unscattered simulation',
                  simulated_unscatter_as_array[0, 0, :, :])

    plt.figure()
    ax = plt.subplot(111)
    plt.plot(simulated_unscatter_as_array[0, 4, 0, :], label='unscattered')
    plt.plot(simulated_scatter_as_array[0, 4, 0, :], label='scattered')
    ax.legend()
    plt.show()
Exemplo n.º 7
0
    """Get attn ASM from sino, attn image and acq model."""
    asm_attn = pet.AcquisitionSensitivityModel(attn, acq_model)
    # temporary fix pending attenuation offset fix in STIR:
    # converting attenuation into 'bin efficiency'
    asm_attn.set_up(sino)
    bin_eff = pet.AcquisitionData(sino)
    bin_eff.fill(1.0)
    asm_attn.unnormalise(bin_eff)
    asm_attn = pet.AcquisitionSensitivityModel(bin_eff)
    return asm_attn


# In[ ]:

# set up the acquisition model
am = pet.AcquisitionModelUsingRayTracingMatrix()
# ASM norm already there
asm_attn = get_asm_attn(acq_data, attns, am)
# Get ASM dependent on attn and/or norm
asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
am.set_acquisition_sensitivity(asm)
am.set_up(acq_data, image)

f_numba = KullbackLeibler(b=acq_data, eta=rand, use_numba=True)
f_numpy = KullbackLeibler(b=acq_data, eta=rand, use_numba=False)

fake_data = am.direct(image)
t0 = time.time()
res_numba = f_numba(fake_data)
t1 = time.time()
dt_numba = t1 - t0
##   See the License for the specific language governing permissions and
##   limitations under the License.

__version__ = '0.1.0'
from docopt import docopt
args = docopt(__doc__, version=__version__)

import sirf.STIR as PET
# create a matrix
m=PET.RayTracingMatrix()
# set some parameters
m.set_do_symmetry_90degrees_min_phi(False)
m.enable_cache(False)
# print information
print(m.get_info())

# same for an acquisition model

# we need to get the matrix itself for the advanced options
am=PET.AcquisitionModelUsingRayTracingMatrix()
am.set_num_tangential_LORs(5)
am.get_matrix().set_restrict_to_cylindrical_FOV(False)
am.get_matrix().set_do_symmetry_90degrees_min_phi(False)
print(am.get_matrix().get_info())
am.get_matrix().set_do_symmetry_180degrees_min_phi(False)
print(am.get_matrix().get_info())
am.get_matrix().set_do_symmetry_swap_s(False)
am.get_matrix().set_do_symmetry_swap_segment(False)
am.get_matrix().set_do_symmetry_shift_z(False)
print(am.get_matrix().get_info())
Exemplo n.º 9
0
def main():

    ###########################################################################
    # Parse input files
    ###########################################################################

    if trans_pattern is None:
        raise AssertionError("--trans missing")
    if sino_pattern is None:
        raise AssertionError("--sino missing")
    trans_files = sorted(glob(trans_pattern))
    sino_files = sorted(glob(sino_pattern))
    attn_files = sorted(glob(attn_pattern))
    rand_files = sorted(glob(rand_pattern))

    num_ms = len(sino_files)
    # Check some sinograms found
    if num_ms == 0:
        raise AssertionError("No sinograms found!")
    # Should have as many trans as sinos
    if num_ms != len(trans_files):
        raise AssertionError("#trans should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #trans = " +
                             str(len(trans_files)))
    # If any rand, check num == num_ms
    if len(rand_files) > 0 and len(rand_files) != num_ms:
        raise AssertionError("#rand should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #rand = " +
                             str(len(rand_files)))

    # For attn, there should be 0, 1 or num_ms images
    if len(attn_files) > 1 and len(attn_files) != num_ms:
        raise AssertionError("#attn should be 0, 1 or #sinos")

    ###########################################################################
    # Read input
    ###########################################################################

    if trans_type == "tm":
        trans = [reg.AffineTransformation(file) for file in trans_files]
    elif trans_type == "disp":
        trans = [
            reg.NiftiImageData3DDisplacement(file) for file in trans_files
        ]
    elif trans_type == "def":
        trans = [reg.NiftiImageData3DDeformation(file) for file in trans_files]
    else:
        raise error("Unknown transformation type")

    sinos_raw = [pet.AcquisitionData(file) for file in sino_files]
    attns = [pet.ImageData(file) for file in attn_files]
    rands = [pet.AcquisitionData(file) for file in rand_files]

    # Loop over all sinograms
    sinos = [0] * num_ms
    for ind in range(num_ms):
        # If any sinograms contain negative values
        # (shouldn't be the case), set them to 0
        sino_arr = sinos_raw[ind].as_array()
        if (sino_arr < 0).any():
            print("Input sinogram " + str(ind) +
                  " contains -ve elements. Setting to 0...")
            sinos[ind] = sinos_raw[ind].clone()
            sino_arr[sino_arr < 0] = 0
            sinos[ind].fill(sino_arr)
        else:
            sinos[ind] = sinos_raw[ind]
        # If rebinning is desired
        segs_to_combine = 1
        if args['--numSegsToCombine']:
            segs_to_combine = int(args['--numSegsToCombine'])
        views_to_combine = 1
        if args['--numViewsToCombine']:
            views_to_combine = int(args['--numViewsToCombine'])
        if segs_to_combine * views_to_combine > 1:
            sinos[ind] = sinos[ind].rebin(segs_to_combine, views_to_combine)
            # only print first time
            if ind == 0:
                print(f"Rebinned sino dimensions: {sinos[ind].dimensions()}")

    ###########################################################################
    # Initialise recon image
    ###########################################################################

    if initial_estimate:
        image = pet.ImageData(initial_estimate)
    else:
        # Create image based on ProjData
        image = sinos[0].create_uniform_image(0.0, (nxny, nxny))
        # If using GPU, need to make sure that image is right size.
        if use_gpu:
            dim = (127, 320, 320)
            spacing = (2.03125, 2.08626, 2.08626)
        # elif non-default spacing desired
        elif args['--dxdy']:
            dim = image.dimensions()
            dxdy = float(args['--dxdy'])
            spacing = (image.voxel_sizes()[0], dxdy, dxdy)
        if use_gpu or args['--dxdy']:
            image.initialise(dim=dim, vsize=spacing)
            image.fill(0.0)

    ###########################################################################
    # Set up resamplers
    ###########################################################################

    resamplers = [get_resampler(image, trans=tran) for tran in trans]

    ###########################################################################
    # Resample attenuation images (if necessary)
    ###########################################################################

    resampled_attns = None
    if len(attns) > 0:
        resampled_attns = [0] * num_ms
        # if using GPU, dimensions of attn and recon images have to match
        ref = image if use_gpu else None
        for i in range(len(attns)):
            # if we only have 1 attn image, then we need to resample into
            # space of each gate. However, if we have num_ms attn images, then
            # assume they are already in the correct position, so use None as
            # transformation.
            tran = trans[i] if len(attns) == 1 else None
            # If only 1 attn image, then resample that. If we have num_ms attn
            # images, then use each attn image of each frame.
            attn = attns[0] if len(attns) == 1 else attns[i]
            resam = get_resampler(attn, ref=ref, trans=tran)
            resampled_attns[i] = resam.forward(attn)

    ###########################################################################
    # Set up acquisition models
    ###########################################################################

    print("Setting up acquisition models...")
    if not use_gpu:
        acq_models = num_ms * [pet.AcquisitionModelUsingRayTracingMatrix()]
    else:
        acq_models = num_ms * [pet.AcquisitionModelUsingNiftyPET()]
        for acq_model in acq_models:
            acq_model.set_use_truncation(True)
            acq_model.set_cuda_verbosity(verbosity)

    # If present, create ASM from ECAT8 normalisation data
    asm_norm = None
    if norm_file:
        asm_norm = pet.AcquisitionSensitivityModel(norm_file)

    # Loop over each motion state
    for ind in range(num_ms):
        # Create attn ASM if necessary
        asm_attn = None
        if resampled_attns:
            asm_attn = get_asm_attn(sinos[ind], resampled_attns[i],
                                    acq_models[ind])

        # Get ASM dependent on attn and/or norm
        asm = None
        if asm_norm and asm_attn:
            if ind == 0:
                print("ASM contains norm and attenuation...")
            asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
        elif asm_norm:
            if ind == 0:
                print("ASM contains norm...")
            asm = asm_norm
        elif asm_attn:
            if ind == 0:
                print("ASM contains attenuation...")
            asm = asm_attn
        if asm:
            acq_models[ind].set_acquisition_sensitivity(asm)

        if len(rands) > 0:
            acq_models[ind].set_background_term(rands[ind])

        # Set up
        acq_models[ind].set_up(sinos[ind], image)

    ###########################################################################
    # Set up reconstructor
    ###########################################################################

    print("Setting up reconstructor...")

    # Create composition operators containing acquisition models and resamplers
    C = [
        CompositionOperator(am, res, preallocate=True)
        for am, res in zip(*(acq_models, resamplers))
    ]

    # Configure the PDHG algorithm
    if args['--normK'] and not args['--onlyNormK']:
        normK = float(args['--normK'])
    else:
        kl = [KullbackLeibler(b=sino, eta=(sino * 0 + 1e-5)) for sino in sinos]
        f = BlockFunction(*kl)
        K = BlockOperator(*C)
        # Calculate normK
        print("Calculating norm of the block operator...")
        normK = K.norm(iterations=10)
        print("Norm of the BlockOperator ", normK)
        if args['--onlyNormK']:
            exit(0)

    # Optionally rescale sinograms and BlockOperator using normK
    scale_factor = 1. / normK if args['--normaliseDataAndBlock'] else 1.0
    kl = [
        KullbackLeibler(b=sino * scale_factor, eta=(sino * 0 + 1e-5))
        for sino in sinos
    ]
    f = BlockFunction(*kl)
    K = BlockOperator(*C) * scale_factor

    # If preconditioned
    if precond:

        def get_nonzero_recip(data):
            """Get the reciprocal of a datacontainer. Voxels where input == 0
            will have their reciprocal set to 1 (instead of infinity)"""
            inv_np = data.as_array()
            inv_np[inv_np == 0] = 1
            inv_np = 1. / inv_np
            data.fill(inv_np)

        tau = K.adjoint(K.range_geometry().allocate(1))
        get_nonzero_recip(tau)

        tmp_sigma = K.direct(K.domain_geometry().allocate(1))
        sigma = 0. * tmp_sigma
        get_nonzero_recip(sigma[0])

        def precond_proximal(self, x, tau, out=None):
            """Modify proximal method to work with preconditioned tau"""
            pars = {
                'algorithm':
                FGP_TV,
                'input':
                np.asarray(x.as_array() / tau.as_array(), dtype=np.float32),
                'regularization_parameter':
                self.lambdaReg,
                'number_of_iterations':
                self.iterationsTV,
                'tolerance_constant':
                self.tolerance,
                'methodTV':
                self.methodTV,
                'nonneg':
                self.nonnegativity,
                'printingOut':
                self.printing
            }

            res, info = regularisers.FGP_TV(pars['input'],
                                            pars['regularization_parameter'],
                                            pars['number_of_iterations'],
                                            pars['tolerance_constant'],
                                            pars['methodTV'], pars['nonneg'],
                                            self.device)
            if out is not None:
                out.fill(res)
            else:
                out = x.copy()
                out.fill(res)
            out *= tau
            return out

        FGP_TV.proximal = precond_proximal
        print("Will run proximal with preconditioned tau...")

    # If not preconditioned
    else:
        sigma = float(args['--sigma'])
        # If we need to calculate default tau
        if args['--tau']:
            tau = float(args['--tau'])
        else:
            tau = 1 / (sigma * normK**2)

    if regularisation == 'none':
        G = IndicatorBox(lower=0)
    elif regularisation == 'FGP_TV':
        r_iterations = float(args['--reg_iters'])
        r_tolerance = 1e-7
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        device = 'gpu' if use_gpu else 'cpu'
        G = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso, r_nonneg,
                   r_printing, device)
    else:
        raise error("Unknown regularisation")

    if precond:

        def PDHG_new_update(self):
            """Modify the PDHG update to allow preconditioning"""
            # save previous iteration
            self.x_old.fill(self.x)
            self.y_old.fill(self.y)

            # Gradient ascent for the dual variable
            self.operator.direct(self.xbar, out=self.y_tmp)
            self.y_tmp *= self.sigma
            self.y_tmp += self.y_old

            self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)

            # Gradient descent for the primal variable
            self.operator.adjoint(self.y, out=self.x_tmp)
            self.x_tmp *= -1 * self.tau
            self.x_tmp += self.x_old

            self.g.proximal(self.x_tmp, self.tau, out=self.x)

            # Update
            self.x.subtract(self.x_old, out=self.xbar)
            self.xbar *= self.theta
            self.xbar += self.x

        PDHG.update = PDHG_new_update

    # Get filename
    outp_file = outp_prefix
    if descriptive_fname:
        if len(attn_files) > 0:
            outp_file += "_wAC"
        if norm_file:
            outp_file += "_wNorm"
        if use_gpu:
            outp_file += "_wGPU"
        outp_file += "_Reg-" + regularisation
        if regularisation == 'FGP_TV':
            outp_file += "-alpha" + str(r_alpha)
            outp_file += "-riters" + str(r_iterations)
        if args['--normK']:
            outp_file += '_userNormK' + str(normK)
        else:
            outp_file += '_calcNormK' + str(normK)
        if args['--normaliseDataAndBlock']:
            outp_file += '_wDataScale'
        else:
            outp_file += '_noDataScale'
        if not precond:
            outp_file += "_sigma" + str(sigma)
            outp_file += "_tau" + str(tau)
        else:
            outp_file += "_wPrecond"
        outp_file += "_nGates" + str(len(sino_files))
        if resamplers is None:
            outp_file += "_noMotion"

    pdhg = PDHG(f=f,
                g=G,
                operator=K,
                sigma=sigma,
                tau=tau,
                max_iteration=num_iters,
                update_objective_interval=update_obj_fn_interval,
                x_init=image,
                log_file=outp_file + ".log")

    def callback_save(iteration, objective_value, solution):
        """Callback function to save images"""
        if (iteration + 1) % save_interval == 0:
            out = solution if not nifti else reg.NiftiImageData(solution)
            out.write(outp_file + "_iters" + str(iteration + 1))

    pdhg.run(iterations=num_iters,
             callback=callback_save,
             verbose=True,
             very_verbose=True)

    if visualisations:
        # show reconstructed image
        out = pdhg.get_output()
        out_arr = out.as_array()
        z = out_arr.shape[0] // 2
        show_2D_array('Reconstructed image', out.as_array()[z, :, :])
        pylab.show()