Exemplo n.º 1
0
def stage_isr_files(device_list, dest_dir):
    """
    Stage bias frame, dark frame, and mask files for the specified
    devices.
    """
    run = siteUtils.getRunNumber()
    fits_files = set()

    ccds = CCDS.intersection(device_list)
    for ccd in ccds:
        fits_files = fits_files.union(get_isr_files(ccd, run))

    rafts = RAFTS.intersection(device_list)
    for raft in rafts:
        if raft in 'R00 R04 R40 R44':
            slots = 'SG0 SG1 SW0 SW1'.split()
        else:
            slots = 'S00 S01 S02 S10 S11 S12 S20 S21 S22'.split()
        for slot in slots:
            det_name = '_'.join((raft, slot))
            fits_files = fits_files.union(get_isr_files(det_name, run))

    for src in fits_files:
        folder = os.path.basename(os.path.dirname(src))
        os.makedirs(os.path.join(dest_dir, folder), exist_ok=True)
        dest = os.path.join(dest_dir, folder, os.path.basename(src))
        if not os.path.isfile(dest):
            print('copying', src, 'to', dest)
            shutil.copy(src, dest)
def run_dark_current_task(sensor_id):
    "Single sensor execution of dark current analysis."
    import lsst.eotest.sensor as sensorTest
    import siteUtils
    import eotestUtils

    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    dark_files = siteUtils.dependency_glob(
        'S*/%s_dark_dark_*.fits' % sensor_id,
        jobname=siteUtils.getProcessName('dark_raft_acq'),
        description='Dark files:')
    bias_frame = siteUtils.dependency_glob('%s_sflat*median_bias.fits' %
                                           sensor_id,
                                           description='Super bias frame:')[0]
    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)
    gains = eotestUtils.getSensorGains(jobname='fe55_raft_analysis',
                                       sensor_id=sensor_id)

    task = sensorTest.DarkCurrentTask()
    task.config.temp_set_point = -100.
    dark_curr_pixels, dark95s \
        = task.run(sensor_id, dark_files, mask_files, gains,
                   bias_frame=bias_frame)

    results_file \
        = siteUtils.dependency_glob('%s_eotest_results.fits' % sensor_id,
                                    jobname='read_noise_raft')[0]

    plots = sensorTest.EOTestPlots(sensor_id, results_file=results_file)
    siteUtils.make_png_file(plots.total_noise,
                            '%s_noise.png' % file_prefix,
                            dark95s=dark95s)
def validate_tearing(results, det_names):
    """Validate the tearing analysis results."""
    run = siteUtils.getRunNumber()
    schema = lcatr.schema.get('tearing_detection_BOT')
    missing_det_names = []
    for det_name in det_names:
        raft, slot = det_name.split('_')
        file_prefix = make_file_prefix(run, det_name)

        tearing_results_file = '%s_tearing_stats.pkl' % file_prefix
        if not os.path.isfile(tearing_results_file):
            missing_det_names.append(det_name)
            continue
        with open(tearing_results_file, 'rb') as input_:
            tearing_stats = pickle.load(input_)
        for values in tearing_stats:
            stats = dict(kv for kv in zip(('job_name', 'subset', 'sensor_id',
                                           'detections', 'slot', 'raft'),
                                          list(values) + [slot, raft]))
            results.append(lcatr.schema.valid(schema, **stats))

    png_files = sorted(glob.glob('*_tearing.png'))
    results.extend(persist_tearing_png_files(png_files))

    report_missing_data("validate_tearing", missing_det_names)

    return results
Exemplo n.º 4
0
def bias_frame_jh_task(det_name):
    """JH version of the bias_frame_task."""
    import os
    import siteUtils
    import json
    from bot_eo_analyses import glob_pattern, bias_frame_task, \
        bias_stability_task

    run = siteUtils.getRunNumber()
    acq_jobname = siteUtils.getProcessName('BOT_acq')
    bias_files \
        = siteUtils.dependency_glob(glob_pattern('bias_frame', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Bias frames:')
    if not bias_files:
        print("bias_frame_task: Needed data files are missing for detector",
              det_name)
        return None

    bias_stability_files \
        = siteUtils.dependency_glob(glob_pattern('bias_stability', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Bias stability frames:')
    if not bias_stability_files:
        print("bias_stability_task: Needed data files are missing for detector",
              det_name)
        return None

    bias_stability_files = sorted(bias_stability_files)
    bias_stability_task(run, det_name, bias_stability_files)

    return bias_frame_task(run, det_name, bias_files[1:])
def validate_overscan(results, det_names):
    """Validate the overscan analysis results."""
    run = siteUtils.getRunNumber()
    results = []
    missing_det_names = set()
    for det_name in det_names:
        file_prefix = make_file_prefix(run, det_name)
        results_file = f'{file_prefix}_overscan_results.fits'
        if not os.path.isfile(results_file):
            missing_det_names.add(det_name)
        else:
            md = dict(DATA_PRODUCT='overscan_task_results',
                      RUN=run,
                      DETECTOR=det_name)
            results.append(siteUtils.make_fileref(results_file, metadata=md))
        png_files = (glob.glob(f'{file_prefix}_*_eper_*.png') +
                     glob.glob(f'{file_prefix}_*_overscan_*.png') +
                     glob.glob(f'{file_prefix}_*_cti.png'))
        md = dict(TEST_CATEGORY='EO', DETECTOR=det_name, RUN=run)
        results.extend(
            siteUtils.persist_png_files('',
                                        file_prefix,
                                        png_files=png_files,
                                        metadata=md))
    report_missing_data('validate_overscan', missing_det_names)
    return results
def run_dark_pixels_task(sensor_id):
    "Single sensor execution of the dark pixels task."
    import lsst.eotest.sensor as sensorTest
    import siteUtils
    import eotestUtils

    acq_jobname = siteUtils.getProcessName('sflat_raft_acq')
    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    sflat_files = siteUtils.dependency_glob('S*/%s_sflat_500_flat_H*.fits' % sensor_id,
                                            jobname=acq_jobname,
                                            description='Superflat files:')

    bias_files = siteUtils.dependency_glob('S*/%s_sflat_bias*.fits' % sensor_id,
                                           jobname=acq_jobname,
                                           description='Bias files:')
    bias_frame = eotestUtils.make_median_bias_frame(bias_files, sensor_id,
                                                    'sflat_raft_acq')
    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)

    task = sensorTest.DarkPixelsTask()
    task.run(sensor_id, sflat_files, mask_files, bias_frame=bias_frame)

    siteUtils.make_png_file(sensorTest.plot_flat,
                            '%s_superflat_dark_defects.png' % file_prefix,
                            '%s_median_sflat.fits' % sensor_id,
                            title='%s, superflat for dark defects analysis' % sensor_id,
                            annotation='ADU/pixel', flatten=True, binsize=4)
Exemplo n.º 7
0
def run_bf_task(sensor_id):
    import lsst.eotest.sensor as sensorTest
    import siteUtils
    import eotestUtils

    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    flat_files = siteUtils.dependency_glob(
        'S*/%s_flat*flat1*.fits' % sensor_id,
        jobname=siteUtils.getProcessName('flat_pair_raft_acq'),
        description='Flat files:')
    bias_frame = siteUtils.dependency_glob('%s_sflat*median_bias.fits' %
                                           sensor_id,
                                           description='Superbias files:')[0]
    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)

    task = sensorTest.BFTask()
    task.run(sensor_id,
             flat_files,
             mask_files=mask_files,
             bias_frame=bias_frame)

    results_file = '%s_eotest_results.fits' % sensor_id
    plots = sensorTest.EOTestPlots(sensor_id, results_file=results_file)
    siteUtils.make_png_file(plots.bf_curves,
                            '%s_brighter-fatter.png' % file_prefix,
                            bf_file='%s_bf.fits' % sensor_id)
def validate_traps(results, det_names):
    """Validate and persist trap results."""
    run = siteUtils.getRunNumber()
    missing_det_names = []
    for det_name in det_names:
        raft, slot = det_name.split('_')
        file_prefix = make_file_prefix(run, det_name)
        trap_file = '%s_traps.fits' % file_prefix
        if not os.path.isfile(trap_file):
            missing_det_names.append(det_name)
            continue
        eotestUtils.addHeaderData(trap_file,
                                  TESTTYPE='TRAP',
                                  DATE=eotestUtils.utc_now_isoformat())
        results.append(siteUtils.make_fileref(trap_file))

        mask_file = '%s_traps_mask.fits' % file_prefix
        results.append(siteUtils.make_fileref(mask_file))

        results_file = '%s_eotest_results.fits' % file_prefix
        data = sensorTest.EOTestResults(results_file)
        amps = data['AMP']
        num_traps = data['NUM_TRAPS']

        for amp, ntrap in zip(amps, num_traps):
            results.append(
                lcatr.schema.valid(lcatr.schema.get('traps_BOT'),
                                   amp=amp,
                                   num_traps=ntrap,
                                   slot=slot,
                                   raft=raft))

    report_missing_data("validate_traps", missing_det_names)

    return results
Exemplo n.º 9
0
    def __init__(self, configFile, sys_paths=()):
        """
        configFile contains the names of the site-specific
        configuration files.  File basenames are provided in
        configFile, and the full paths are constructed in the
        _read(...) method.
        """
        super(CcsSetup, self).__init__()
        self.commands = []
        self['tsCWD'] = os.getcwd()
        self['labname'] = siteUtils.getSiteName()
        self['jobname'] = siteUtils.getJobName()
        self['CCDID'] = siteUtils.getUnitId()
        self['UNITID'] = siteUtils.getUnitId()
        self['LSSTID'] = siteUtils.getLSSTId()
        try:
            self['RUNNUM'] = siteUtils.getRunNumber()
        except Exception:
            self['RUNNUM'] = "no_lcatr_run_number"

        self['ts'] = os.getenv('CCS_TS', default='ts')
        self['archon'] = os.getenv('CCS_ARCHON', default='archon')

        # The following are only available for certain contexts.
        if 'CCS_VAC_OUTLET' in os.environ:
            self['vac_outlet'] = os.getenv('CCS_VAC_OUTLET')
        if 'CCS_CRYO_OUTLET' in os.environ:
            self['cryo_outlet'] = os.getenv('CCS_CRYO_OUTLET')
        if 'CCS_PUMP_OUTLET' in os.environ:
            self['pump_outlet'] = os.getenv('CCS_PUMP_OUTLET')

        self._read(os.path.join(siteUtils.getJobDir(), configFile))

        self.sys_paths = sys_paths
def dark_defects_jh_task(det_name):
    """JH version of single sensor execution of the dark defects task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        get_amplifier_gains, bias_filename, dark_defects_task, get_mask_files

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    sflat_files \
        = siteUtils.dependency_glob(glob_pattern('dark_defects', det_name),
                                    acq_jobname=acq_jobname)
    if not sflat_files:
        print("dark_defects_task: No high flux superflat files found for",
              det_name)
        return None

    mask_files = sorted(glob.glob(f'{file_prefix}*mask*.fits'))
    bias_frame = bias_filename(run, det_name)

    return dark_defects_task(run,
                             det_name,
                             sflat_files,
                             mask_files=mask_files,
                             bias_frame=bias_frame)
Exemplo n.º 11
0
def tearing_fp_heat_map(pattern='*_tearing_stats.pickle'):
    """
    Plot a heat map of the tearing detections per amp over
    the full focal plane.  Glob the data from the tearing stats
    pickle files produced by tearing_task for each CCD.
    """
    channels = {amp: 'C'+_ for amp, _ in imutils.channelIds.items()}
    # With lsst_distrib v20.0.0, the channel names for the WF sensors
    # are of the form 'C0x'.
    wf_channels = {_ + 1: f'C0{_}' for _ in range(8)}
    # The following dict has the correct mapping:
    #wf_channels = {_ + 1: f'C1{_}' for _ in range(8)}
    amp_data = defaultdict(dict)
    for item in glob.glob(pattern):
        det_name = os.path.basename(item)[:len('R22_S11')]
        ch = wf_channels if 'SW' in det_name else channels
        with open(item, 'rb') as fd:
            _, amp_counts = pickle.load(fd)
        for amp, detections in amp_counts.items():
            amp_data[det_name][ch[amp]] = detections
    fig = plt.figure()
    ax = fig.add_subplot(111)
    run = siteUtils.getRunNumber()
    plot_focal_plane(ax, amp_data, camera=camera_info.camera_object,
                     title=f'Run {run}, tearing detections')
    plt.savefig(f'LCA-10134_Cryostat-0001_{run}_tearing_detections.png')
Exemplo n.º 12
0
def qe_jh_task(det_name):
    """JH version of single sensor execution of the QE task."""
    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    lambda_files = siteUtils.dependency_glob(glob_pattern('qe', det_name),
                                             acq_jobname=acq_jobname)
    if not lambda_files:
        print("qe_task: QE scan files not found for detector", det_name)
        return None

    pd_ratio_file = eotestUtils.getPhotodiodeRatioFile()
    if pd_ratio_file is None:
        message = ("The BOT photodiode ratio file is " +
                   "not given in config/%s/eotest_calibrations.cfg."
                   % siteUtils.getSiteName())
        raise RuntimeError(message)

#    correction_image = eotestUtils.getIlluminationNonUniformityImage()
#    if correction_image is None:
#        print()
#        print("WARNING: The correction image file is not given in")
#        print("config/%s/eotest_calibrations.cfg." % siteUtils.getSiteName())
#        print("No correction for non-uniform illumination will be applied.")
#        print()
#        sys.stdout.flush()
    mask_files = get_mask_files(det_name)
    eotest_results_file = '{}_eotest_results.fits'.format(file_prefix)
    gains = get_amplifier_gains(eotest_results_file)
    bias_frame = bias_filename(run, det_name)

    return qe_task(run, det_name, lambda_files, pd_ratio_file, gains,
                   mask_files=mask_files, bias_frame=bias_frame,
                   mondiode_func=mondiode_value)
def validate_flat_gain_stability(results, det_names):
    """Valdiate the output files from the flat_gain_stability analysis"""
    if 'gainstability' not in get_analysis_types():
        return results

    run = siteUtils.getRunNumber()
    missing_det_names = set()
    for det_name in det_names:
        file_prefix = make_file_prefix(run, det_name)
        results_file = f'{file_prefix}_flat_signal_sequence.pickle'
        if not os.path.isfile(results_file):
            missing_det_names.add(det_name)
        else:
            md = dict(DATA_PRODUCT='flat_gain_stability_results')
            results.append(siteUtils.make_fileref(results_file, metadata=md))

    report_missing_data('validate_flat_gain_stability', missing_det_names)

    unit_id = siteUtils.getUnitId()
    png_files = glob.glob('*flat_gain_stability.png')
    for png_file in png_files:
        md = dict(DATA_PRODUCT='flat_gain_stability_plot')
        if unit_id in png_file:
            md['LsstId'] = unit_id
        results.append(siteUtils.make_fileref(png_file, metadata=md))

    return results
Exemplo n.º 14
0
def run_read_noise_task(sensor_id):
    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    bias_files = siteUtils.dependency_glob(
        'S*/%s_fe55_fe55_*.fits' % sensor_id,
        jobname=siteUtils.getProcessName('fe55_raft_acq'),
        description='Fe55 files for read noise:')
    gains = eotestUtils.getSensorGains(jobname='fe55_raft_analysis',
                                       sensor_id=sensor_id)

    system_noise = None

    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)

    task = sensorTest.ReadNoiseTask()
    task.config.temp_set_point = -100.
    task.run(sensor_id,
             bias_files,
             gains,
             system_noise=system_noise,
             mask_files=mask_files,
             use_overscan=True)

    # Compute amp-amp correlated noise.
    _, corr_fig, _ = correlated_noise(bias_files,
                                      target=0,
                                      make_plots=True,
                                      title=sensor_id)
    plt.figure(corr_fig.number)
    plt.savefig('%s_correlated_noise.png' % file_prefix)
Exemplo n.º 15
0
def flat_gain_stability_jh_task(det_name):
    """JH version of single sensor execution of the flat pairs task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        bias_filename, flat_gain_stability_task,\
        get_mask_files, medianed_dark_frame

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    flat_files = siteUtils.dependency_glob(glob_pattern('tearing', det_name),
                                           acq_jobname=acq_jobname)
    if not flat_files:
        print("flat_gain_stability_task: Flat pairs files not found for",
              det_name)
        return None

    mask_files = get_mask_files(det_name)
    bias_frame = bias_filename(run, det_name)
    dark_frame = medianed_dark_frame(det_name)

    return flat_gain_stability_task(run,
                                    det_name,
                                    flat_files,
                                    mask_files=mask_files,
                                    bias_frame=bias_frame,
                                    dark_frame=dark_frame)
Exemplo n.º 16
0
def ptc_jh_task(det_name):
    """JH version of single sensor execution of the PTC task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        get_amplifier_gains, bias_filename, ptc_task, get_mask_files

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    flat_files = siteUtils.dependency_glob(glob_pattern('ptc', det_name),
                                           acq_jobname=acq_jobname)
    if not flat_files:
        print("ptc_task: Flat pairs files not found for detector", det_name)
        return None

    mask_files = get_mask_files(det_name)
    eotest_results_file = '{}_eotest_results.fits'.format(file_prefix)
    gains = get_amplifier_gains(eotest_results_file)
    bias_frame = bias_filename(run, det_name)

    return ptc_task(run,
                    det_name,
                    flat_files,
                    gains,
                    mask_files=mask_files,
                    bias_frame=bias_frame)
Exemplo n.º 17
0
def dark_current_jh_task(det_name):
    """JH version of single sensor execution of the dark current task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        get_amplifier_gains, bias_filename, dark_current_task,\
        plot_ccd_total_noise, get_mask_files

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    dark_files \
        = siteUtils.dependency_glob(glob_pattern('dark_current', det_name),
                                    acq_jobname=acq_jobname,
                                    description="Dark current frames:")
    if not dark_files:
        print("dark_current_task: No dark files found for detector", det_name)
        return None

    mask_files = get_mask_files(det_name)
    eotest_results_file \
        = siteUtils.dependency_glob('{}_eotest_results.fits'.format(file_prefix),
                                    jobname='read_noise_BOT')[0]
    gains = get_amplifier_gains('{}_eotest_results.fits'.format(file_prefix))
    bias_frame = bias_filename(run, det_name)

    dark_curr_pixels, dark95s \
        = dark_current_task(run, det_name, dark_files, gains,
                            mask_files=mask_files, bias_frame=bias_frame)
    plot_ccd_total_noise(run, det_name, dark_curr_pixels, dark95s,
                         eotest_results_file)
    return dark_curr_pixels, dark95s
Exemplo n.º 18
0
def read_noise_jh_task(det_name):
    """JH version of the single sensor read noise task."""
    import os
    import glob
    import logging
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        get_amplifier_gains, read_noise_task, get_mask_files

    logger = logging.getLogger('read_noise_jh_task')
    logger.setLevel(logging.INFO)

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')
    nbias = os.environ.get('LCATR_NUM_BIAS_FRAMES', 10)

    bias_files \
        = siteUtils.dependency_glob(glob_pattern('read_noise', det_name),
                                    acq_jobname=acq_jobname)[:nbias]
    if not bias_files:
        logger.info(
            "read_noise_task: Needed data files are missing "
            "for detector %s", det_name)
        return None
    eotest_results_file = '{}_eotest_results.fits'.format(file_prefix)
    gains = get_amplifier_gains(eotest_results_file)

    mask_files = get_mask_files(det_name)

    return read_noise_task(run,
                           det_name,
                           bias_files,
                           gains,
                           mask_files=mask_files)
Exemplo n.º 19
0
def bf_jh_task(det_name):
    """JH version of single sensor execution of the brighter-fatter task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        bias_filename, bf_task, find_flat2_bot, get_mask_files,\
        get_amplifier_gains

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    flat_files \
        = siteUtils.dependency_glob(glob_pattern('brighter_fatter', det_name),
                                    acq_jobname=acq_jobname)

    if not flat_files:
        print("bf_jh_task: Flat pairs files not found for detector", det_name)
        return None

    flat_files = [_ for _ in flat_files if 'flat1' in _]

    mask_files = get_mask_files(det_name)
    eotest_results_file = '{}_eotest_results.fits'.format(file_prefix)
    gains = get_amplifier_gains(eotest_results_file)
    bias_frame = bias_filename(run, det_name)

    return bf_task(run,
                   det_name,
                   flat_files,
                   gains,
                   mask_files=mask_files,
                   flat2_finder=find_flat2_bot,
                   bias_frame=bias_frame)
Exemplo n.º 20
0
def bright_defects_jh_task(det_name):
    """JH version of single sensor bright pixels task."""
    import glob
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern,\
        get_amplifier_gains, bias_filename, bright_defects_task, get_mask_files

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)
    acq_jobname = siteUtils.getProcessName('BOT_acq')

    dark_files \
        = siteUtils.dependency_glob(glob_pattern('bright_defects', det_name),
                                    acq_jobname=acq_jobname)
    if not dark_files:
        print("bright_defects_task: Needed data files missing for detector",
              det_name)
        return None

    eotest_results_file = '{}_eotest_results.fits'.format(file_prefix)
    gains = get_amplifier_gains(eotest_results_file)
    mask_files = sorted(glob.glob(f'{file_prefix}*mask*.fits'))
    bias_frame = bias_filename(run, det_name)

    return bright_defects_task(run,
                               det_name,
                               dark_files,
                               gains,
                               mask_files=mask_files,
                               bias_frame=bias_frame)
Exemplo n.º 21
0
def persistence_jh_task(det_name):
    """JH version of the persistence_task."""
    import siteUtils
    from bot_eo_analyses import make_file_prefix, glob_pattern, \
        bias_frame_task, get_mask_files, get_bot_eo_config, persistence_task

    run = siteUtils.getRunNumber()
    file_prefix = make_file_prefix(run, det_name)

    acq_jobname = siteUtils.getProcessName('BOT_acq')
    bias_files \
        = siteUtils.dependency_glob(glob_pattern('persistence_bias', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Persistence bias frames:')
    dark_files \
        = siteUtils.dependency_glob(glob_pattern('persistence_dark', det_name),
                                    acq_jobname=acq_jobname,
                                    description='Persistence dark frames:')
    if not bias_files or not dark_files:
        print("persistence_task: Needed data files are missing for detector",
              det_name)
        return None

    # Sort by test sequence number, i.e., by filenames.
    bias_files = sorted(bias_files)
    dark_files = sorted(dark_files)

    # Make a superbias frame using the pre-exposure persistence bias
    # files, skipping the first exposure.
    superbias_frame = f'{file_prefix}_persistence_superbias.fits'
    bias_frame_task(run, det_name, bias_files, bias_frame=superbias_frame)

    return persistence_task(run, det_name, dark_files, superbias_frame,
                            get_mask_files(det_name))
def validate_bias_frame(results, det_names):
    """Validate and persist medianed bias frames."""
    run = siteUtils.getRunNumber()
    missing_det_names = set()
    for det_name in det_names:
        file_prefix = make_file_prefix(run, det_name)
        bias_frame = f'{file_prefix}_median_bias.fits'
        rolloff_mask = f'{file_prefix}_edge_rolloff_mask.fits'
        pca_bias_file = f'{file_prefix}_pca_bias.fits'
        pca_superbias = f'{file_prefix}_pca_superbias.fits'

        # Add/update the metadata to the primary HDU of these files.
        for fitsfile in (bias_frame, rolloff_mask, pca_bias_file,
                         pca_superbias):
            if os.path.isfile(fitsfile):
                eotestUtils.addHeaderData(fitsfile,
                                          TESTTYPE='BIAS',
                                          DATE=eotestUtils.utc_now_isoformat())
                results.append(lcatr.schema.fileref.make(fitsfile))
            else:
                missing_det_names.add(det_name)

        # Persist the PCA bias model file.
        pca_bias_model = f'{file_prefix}_pca_bias.pickle'
        if os.path.isfile(pca_bias_model):
            results.append(lcatr.schema.fileref.make(pca_bias_model))
        else:
            missing_det_names.add(det_name)
    report_missing_data('validate_bias_frames', missing_det_names)
    return results
def run_ptc_task(sensor_id):
    import lsst.eotest.sensor as sensorTest
    import siteUtils
    import eotestUtils

    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    flat_files = siteUtils.dependency_glob(
        'S*/%s_flat*flat?_*.fits' % sensor_id,
        jobname=siteUtils.getProcessName('flat_pair_raft_acq'),
        description='Flat files:')
    bias_frame = siteUtils.dependency_glob('%s_sflat*median_bias.fits' %
                                           sensor_id,
                                           description='Super bias frame:')[0]
    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)
    gains = eotestUtils.getSensorGains(jobname='fe55_raft_analysis',
                                       sensor_id=sensor_id)

    task = sensorTest.PtcTask()
    task.run(sensor_id, flat_files, mask_files, gains, bias_frame=bias_frame)

    results_file = '%s_eotest_results.fits' % sensor_id
    plots = sensorTest.EOTestPlots(sensor_id, results_file=results_file)
    siteUtils.make_png_file(plots.ptcs,
                            '%s_ptcs.png' % file_prefix,
                            ptc_file='%s_ptc.fits' % sensor_id)
def run_dark_pixels_task(sensor_id):
    print("run_dark_pixels_task: sensor_id = ", sensor_id)
    #    raft_id = os.environ['LCATR_UNIT_ID']

    #    raft = camera_components.Raft.create_from_etrav(raft_id)

    #    wgSlotName = siteUtils.getWGSlotNames(raft)[sensor_id];

    "Single sensor execution of the dark pixels task."
    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    sflat_files = siteUtils.dependency_glob(
        'S*/%s_sflat_500_flat_*.fits' % sensor_id,
        jobname=siteUtils.getProcessName('sflat_raft_acq'),
        description='Superflat files:')
    print("sflat query: ", 'S*/%s_sflat_500_flat_H*.fits' % sensor_id)
    print("sflat_files = ", sflat_files)

    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)

    task = sensorTest.DarkPixelsTask()
    task.run(sensor_id, sflat_files, mask_files)

    siteUtils.make_png_file(sensorTest.plot_flat,
                            '%s_superflat_dark_defects.png' % file_prefix,
                            '%s_median_sflat.fits' % sensor_id,
                            title='%s, superflat for dark defects analysis' %
                            sensor_id,
                            annotation='ADU/pixel')
Exemplo n.º 25
0
def scan_mode_analysis_jh_task(raft_name):
    """JH version of scan mode analysis task."""
    import siteUtils
    from bot_eo_analyses import get_scan_mode_files, scan_mode_analysis_task

    run = siteUtils.getRunNumber()
    scan_mode_files = get_scan_mode_files(raft_name)
    return scan_mode_analysis_task(run, raft_name, scan_mode_files)
def run_qe_task(sensor_id):

    try:
        if hw_objects[sensor_id] :
            return
    except:
        hw_objects[sensor_id] = True
        print("hw_objects = ",hw_objects)


    "Single sensor execution of the QE task."
    file_prefix = '%s_%s' % (sensor_id, siteUtils.getRunNumber())
    lambda_files = siteUtils.dependency_glob('S*/%s_lambda_flat_*.fits' % sensor_id,
                                             jobname=siteUtils.getProcessName('qe_raft_acq'),
                                             description='Lambda files:')

    pd_ratio_file = eotestUtils.getPhotodiodeRatioFile()
    if pd_ratio_file is None:
        message = ("The test-stand specific photodiode ratio file is " +
                   "not given in config/%s/eotest_calibrations.cfg."
                   % siteUtils.getSiteName())
        raise RuntimeError(message)

    correction_image = eotestUtils.getIlluminationNonUniformityImage()
    if correction_image is None:
        print()
        print("WARNING: The correction image file is not given in")
        print("config/%s/eotest_calibrations.cfg." % siteUtils.getSiteName())
        print("No correction for non-uniform illumination will be applied.")
        print()
        sys.stdout.flush()

    mask_files = \
        eotestUtils.glob_mask_files(pattern='%s_*mask.fits' % sensor_id)
    gains = eotestUtils.getSensorGains(jobname='fe55_raft_analysis',
                                       sensor_id=sensor_id)

    task = sensorTest.QeTask()
    task.config.temp_set_point = -100.
    task.run(sensor_id, lambda_files, pd_ratio_file, mask_files, gains,
             correction_image=correction_image)

    results_file \
        = siteUtils.dependency_glob('%s_eotest_results.fits' % sensor_id,
                                    jobname='fe55_raft_analysis',
                                    description='Fe55 results file')[0]
    plots = sensorTest.EOTestPlots(sensor_id, results_file=results_file)

    siteUtils.make_png_file(plots.qe,
                            '%s_qe.png' % file_prefix,
                            qe_file='%s_QE.fits' % sensor_id)

    try:
        plots.flat_fields(os.path.dirname(lambda_files[0]),
                          annotation='e-/pixel, gain-corrected, bias-subtracted')
    except Exception as eobj:
        print("Exception raised while creating flat fields:")
        print(str(eobj))
Exemplo n.º 27
0
def stage_files(device_list, data_keys):
    """
    Function to stage the needed raw image files from the specified
    devices (CCDs or rafts) for the current job in the scratch area.
    """
    # Gather the filenames of the needed data.
    fits_files = set()
    for device in device_list:
        fits_files = fits_files.union(get_files(data_keys, device))

    if not fits_files:
        return

    # Make the scratch directory for the BOT data.
    run_number = siteUtils.getRunNumber()
    scratch_dir = os.environ.get('LCATR_SCRATCH_DIR', '/scratch')
    dest_dir = os.path.join(scratch_dir, 'bot_data', str(run_number))
    os.makedirs(dest_dir, exist_ok=True)

    # Glob existing files to avoid re-copying or for possible clean up.
    old_files = set(glob.glob(os.path.join(dest_dir, '*', 'MC_C*.fits')))
    old_files = old_files.union(
        glob.glob(os.path.join(dest_dir, '*', 'Photodiode*.txt')))

    # Create a dict that maps src to dest file paths.  Preserve the
    # folder name of the exposure so that the PTC and flat pairs tasks
    # can identify the paired exposures.
    new_files = dict()
    frame_dirs = set()
    for src in fits_files:
        frame_dir = os.path.dirname(src)
        frame_dirs.add(frame_dir)
        folder = os.path.basename(frame_dir)
        os.makedirs(os.path.join(dest_dir, folder), exist_ok=True)
        new_files[src] = os.path.join(dest_dir, folder, os.path.basename(src))

    # Include any Photodiode_Readings*.txt files.
    for frame_dir in frame_dirs:
        for src in glob.glob(os.path.join(frame_dir, 'Photodiode*.txt')):
            new_files[src] = os.path.join(dest_dir,
                                          os.path.basename(frame_dir),
                                          os.path.basename(src))

    # Clean up unneeded files.
    unneeded_files = old_files.difference(new_files.values())
    for item in unneeded_files:
        print('removing', item)
        os.remove(item)

    # Copy the remaining files.
    for src, dest in new_files.items():
        if dest not in old_files:
            print('copying', src, 'to', dest)
            shutil.copy(src, dest)

    stage_isr_files(device_list, dest_dir)
def validate_qe(results, det_names):
    """Validate the QE results."""
    run = siteUtils.getRunNumber()
    missing_det_names = []
    for det_name in det_names:
        raft, slot = det_name.split('_')
        file_prefix = make_file_prefix(run, det_name)

        qe_results_file = '%s_QE.fits' % file_prefix
        if not os.path.isfile(qe_results_file):
            missing_det_names.append(det_name)
            continue
        with fits.open(qe_results_file) as qe_results:
            qe_data = qe_results['QE_BANDS'].data
            QE = OrderedDict((band, []) for band in qe_data.field('BAND'))
            for amp in range(1, 17):
                values = qe_data.field('AMP%02i' % amp)
            for band, value in zip(QE, values):
                QE[band].append(value)

        for band in QE:
            for amp in range(1, 17):
                results.append(
                    lcatr.schema.valid(lcatr.schema.get('qe_BOT_analysis'),
                                       band=band,
                                       QE=QE[band][amp - 1],
                                       amp=amp,
                                       slot=slot,
                                       raft=raft))

        qe_files = glob.glob('%s_*QE*.fits' % file_prefix)
        for item in qe_files:
            eotestUtils.addHeaderData(item,
                                      TESTTYPE='LAMBDA',
                                      DATE=eotestUtils.utc_now_isoformat())
        results.extend([siteUtils.make_fileref(item) for item in qe_files])

        # Persist the png files.
        metadata = dict(DETECTOR=det_name,
                        RUN=run,
                        TESTTYPE='LAMBDA',
                        TEST_CATEGORY='EO')
        results.extend(
            siteUtils.persist_png_files('%s*qe.png' % file_prefix,
                                        file_prefix,
                                        metadata=metadata))
        results.extend(
            siteUtils.persist_png_files('%s*flat.png' % file_prefix,
                                        file_prefix,
                                        metadata=metadata))

    report_missing_data("validate_qe", missing_det_names)

    return results
def validate_brighter_fatter(results, det_names):
    """Validate the brighter-fatter results."""
    run = siteUtils.getRunNumber()
    missing_det_names = set()
    for det_name in det_names:
        raft, slot = det_name.split('_')
        file_prefix = make_file_prefix(run, det_name)
        bf_results = '%s_bf.fits' % file_prefix
        if not os.path.isfile(bf_results):
            missing_det_names.add(det_name)
            continue
        eotestUtils.addHeaderData(bf_results,
                                  TESTTYPE='FLAT',
                                  DATE=eotestUtils.utc_now_isoformat())

        results.append(siteUtils.make_fileref(bf_results))

        results_file = '%s_eotest_results.fits' % file_prefix
        data = sensorTest.EOTestResults(results_file)

        columns = (data['AMP'], data['BF_XCORR'], data['BF_XCORR_ERR'],
                   data['BF_YCORR'], data['BF_YCORR_ERR'], data['BF_SLOPEX'],
                   data['BF_SLOPEX_ERR'], data['BF_SLOPEY'],
                   data['BF_SLOPEY_ERR'], data['BF_MEAN'])
        for amp, bf_xcorr, bf_xcorr_err, bf_ycorr, bf_ycorr_err, \
            bf_slopex, bf_slopex_err, bf_slopey, bf_slopey_err, bf_mean \
            in zip(*columns):
            results.append(
                lcatr.schema.valid(lcatr.schema.get('brighter_fatter_BOT'),
                                   amp=amp,
                                   bf_xcorr=bf_xcorr,
                                   bf_xcorr_err=bf_xcorr_err,
                                   bf_ycorr=bf_ycorr,
                                   bf_ycorr_err=bf_ycorr_err,
                                   bf_slopex=bf_slopex,
                                   bf_slopex_err=bf_slopex_err,
                                   bf_slopey=bf_slopey,
                                   bf_slopey_err=bf_slopey_err,
                                   bf_mean=bf_mean,
                                   slot=slot,
                                   raft=raft))

        # Persist the png files.
        metadata = dict(DETECTOR=det_name,
                        RUN=run,
                        TESTTYPE='FLAT',
                        TEST_CATEGORY='EO')

        results.extend(
            siteUtils.persist_png_files('%s*brighter-fatter.png' % file_prefix,
                                        file_prefix,
                                        metadata=metadata))
    return results
Exemplo n.º 30
0
def validate_read_noise(results, det_names):
    """Validate and persist read noise results."""
    run = siteUtils.getRunNumber()
    missing_det_names = set()
    for det_name in det_names:
        raft, slot = det_name.split('_')
        file_prefix = make_file_prefix(run, det_name)

        read_noise_file = '%s_eotest_results.fits' % file_prefix
        if not os.path.isfile(read_noise_file):
            # No data for this detector, so note that and continue
            # with the others.
            missing_det_names.add(det_name)
            continue
        data = sensorTest.EOTestResults(read_noise_file)
        amps = data['AMP']
        read_noise_data = data['READ_NOISE']
        system_noise_data = data['SYSTEM_NOISE']
        total_noise_data = data['TOTAL_NOISE']
        for amp, read_noise, system_noise, total_noise \
            in zip(amps, read_noise_data, system_noise_data, total_noise_data):
            results.append(lcatr.schema.valid(
                lcatr.schema.get('read_noise_BOT'),
                amp=amp, read_noise=read_noise, system_noise=system_noise,
                total_noise=total_noise, slot=slot, raft=raft))

        files = glob.glob('%s_read_noise?*.fits' % file_prefix)
        for fitsfile in files:
            eotestUtils.addHeaderData(fitsfile, TESTTYPE='FE55',
                                      DATE=eotestUtils.utc_now_isoformat())

        data_products = [siteUtils.make_fileref(item) for item in files]
        results.extend(data_products)

        # Persist the png files.
        metadata = dict(DETECTOR=det_name, TESTTYPE='FE55', TEST_CATEGORY='EO',
                        RUN=run)
        filename = '%s_correlated_noise.png' % file_prefix
        results.extend(siteUtils.persist_png_files(filename, file_prefix,
                                                   metadata=metadata))

    # Persist the raft-level overscan correlation plots.
    for raft in camera_info.get_installed_raft_names():
        metadata = dict(TESTTYPE='FE55', TEST_CATEGORY='EO', RAFT=raft, RUN=run)
        file_prefix = make_file_prefix(run, raft)
        filename = '%s_overscan_correlations.png' % file_prefix
        results.extend(siteUtils.persist_png_files(filename, file_prefix,
                                                   metadata=metadata))

    report_missing_data("validate_read_noise", missing_det_names)

    return results
Exemplo n.º 31
0
    def __init__(self, configFile):
        """
        configFile contains the names of the site-specific
        configuration files.  File basenames are provided in
        configFile, and the full paths are constructed in the
        _read(...) method.
        """
        super(CcsSetup, self).__init__()
        if os.environ.has_key('CCS_TS8'):
            self['ts8']=_quote(os.getenv('CCS_TS8'))
        else:
            self['ts8'] = _quote('ts8')
        if os.environ.has_key('CCS_JYTH'):
            self['jyth']=_quote(os.getenv('CCS_JYTH'))
        else:
            self['jyth'] = _quote('JythonInterpreterConsole')
        if os.environ.has_key('CCS_JSON_PORT'):
            self['jsonport']=os.getenv('CCS_JSON_PORT')
        else:
            self['jsonport'] = 4444
        if os.environ.has_key('CCS_PS'):
            self['ps']=_quote(os.getenv('CCS_PS'))
        else:
            self['ps'] = _quote('ccs-rebps')
        if os.environ.has_key('CCS_TS'):
            self['ts']=_quote(os.getenv('CCS_TS'))
        else:
            self['ts'] = _quote('ts')
        if os.environ.has_key('CCS_ARCHON'):
            self['archon']=_quote(os.getenv('CCS_ARCHON'))
        else:
            self['archon'] = _quote('archon')
        if os.environ.has_key('CCS_VAC_OUTLET'):
            self['vac_outlet']=os.getenv('CCS_VAC_OUTLET')
# there is no default for vac_outlet - if there is a script that needs
# it and it has not been defined then I want it to crash
        if os.environ.has_key('CCS_CRYO_OUTLET'):
            self['cryo_outlet']=os.getenv('CCS_CRYO_OUTLET')
# there is no default for cryo_outlet - if there is a script that needs
# it and it has not been defined then I want it to crash
        if os.environ.has_key('CCS_PUMP_OUTLET'):
            self['pump_outlet']=os.getenv('CCS_PUMP_OUTLET')
# there is no default for pump_outlet - if there is a script that needs
# it and it has not been defined then I want it to crash
        self['tsCWD'] = _quote(os.getcwd())
        self['labname'] = _quote(siteUtils.getSiteName())
        self['jobname'] = _quote(siteUtils.getJobName())
        self['CCDID'] = _quote(siteUtils.getUnitId())
        self['UNITID'] = _quote(siteUtils.getUnitId())
        self['LSSTID'] = _quote(siteUtils.getLSSTId())

        unitid = siteUtils.getUnitId()
        CCDTYPE = _quote(siteUtils.getUnitType())
        ccdnames = {}
        ccdmanunames = {}
        ccdnames,ccdmanunames = siteUtils.getCCDNames()

        print "retrieved the following LSST CCD names list"
        print ccdnames
        print "retrieved the following Manufacturers CCD names list"
        print ccdmanunames
        for slot in ccdnames :
            print "CCD %s is in slot %s" % (ccdnames[slot],slot)
            self['CCD%s'%slot] = _quote(ccdnames[slot])
            if 'itl' in ccdnames[slot].lower() :
                CCDTYPE = 'itl'
            if 'e2v' in ccdnames[slot].lower() :
                CCDTYPE = 'e2v'
        for slot in ccdmanunames :
            print "CCD %s is in slot %s" % (ccdmanunames[slot],slot)
            self['CCDMANU%s'%slot] = _quote(ccdmanunames[slot])
        try:
            self['RUNNUM'] = _quote(siteUtils.getRunNumber())
        except:
            self['RUNNUM'] = "no_lcatr_run_number"
            pass
        self._read(os.path.join(siteUtils.getJobDir(), configFile))

        print "CCDTYPE = %s" % CCDTYPE
        self['sequence_file'] = _quote("NA")
        self['acffile'] = self['itl_acffile']
# set default type
        self['CCSCCDTYPE'] = _quote("ITL")
        if ("RTM" in unitid.upper() or "ETU" in unitid.upper() or "RSA" in unitid.upper()) :
            if ("e2v" in CCDTYPE) :
                self['CCSCCDTYPE'] = _quote("E2V")
                self['acffile'] = self['e2v_acffile']
                self['sequence_file'] = self['e2v_seqfile']
            else :
                self['CCSCCDTYPE'] = _quote("ITL")
                self['acffile'] = self['itl_acffile']
                self['sequence_file'] = self['itl_seqfile']
            os.system("export | grep -i seq")
            seqdir = ""
            if os.environ.has_key('SEQUENCERFILESDIR') :
                seqdir = os.getenv('SEQUENCERFILESDIR')
                print "seqdir=",seqdir
                self['sequence_file'] = self['sequence_file'].replace('${SEQUENCERFILESDIR}',seqdir)
            os.system("cp -vp %s %s" % (self['sequence_file'],self['tsCWD']))

            # now use the local copy
#            bb = self['sequence_file'].split("/")
#            self['sequence_file'] = _quote("%s/%s" % (os.getcwd(),bb[len(bb)-1].split("'")[0]))
            print "The sequence file to be used is %s" % self['sequence_file']
        else :
            if ("ITL" in CCDTYPE) :
                self['CCSCCDTYPE'] = _quote("ITL")
                self['acffile'] = self['itl_acffile']
            if ("e2v" in CCDTYPE) :
                self['CCSCCDTYPE'] = _quote("E2V")
                self['acffile'] = self['e2v_acffile']
            print "The acffile to be used is %s" % self['acffile']
Exemplo n.º 32
0
#!/usr/bin/env python
import Tkinter
import glob
import shutil
import os
import matplotlib.pyplot as plt
import ccs_trending
import siteUtils
import time
import subprocess

raft_id = siteUtils.getLSSTId()
run_number = siteUtils.getRunNumber()

host = 'localhost'

jobDir = siteUtils.getJobDir()

shutil.copy("%s/ts_quantities.cfg" % jobDir ,os.getcwd())
shutil.copy("%s/ts8_quantities.cfg" % jobDir ,os.getcwd())

ccsProducer('RTM_thermo', 'ccsthermal.py')

cdir = os.getcwd()

#rtmstatelist = [
#"RTM_off_5min_stable__502",
#"REB_quiescient_record__505",
#"RTM_quies_5min_record__508",
#"RTM_biases_5min_record__510",
#"RTM_clears_5min_record__512",