Exemplo n.º 1
0
def test_segmented_rings():
    center = (75, 75)
    img_dim = (150, 140)
    first_q = 5
    delta_q = 5
    num_rings = 4  # number of Q rings
    slicing = 4

    edges = roi.ring_edges(first_q, width=delta_q, spacing=4,
                           num_rings=num_rings)
    print("edges", edges)

    label_array = roi.segmented_rings(edges, slicing, center,
                                      img_dim, offset_angle=0)
    print("label_array for segmented_rings", label_array)

    # Did we draw the right number of ROIs?
    label_list = np.unique(label_array.ravel())
    actual_num_labels = len(label_list) - 1
    num_labels = num_rings * slicing
    assert_equal(actual_num_labels, num_labels)

    # Did we draw the right ROIs? (1-16 with some zeros around too)
    assert_array_equal(label_list, np.arange(num_labels + 1))

    # A brittle test to make sure the exactly number of pixels per label
    # is never accidentally changed:
    # number of pixels per ROI
    num_pixels = np.bincount(label_array.ravel())
    expected_num_pixels = [18372, 59, 59, 59, 59, 129, 129, 129,
                           129, 200, 200, 200, 200, 269, 269, 269, 269]
    assert_array_equal(num_pixels, expected_num_pixels)
Exemplo n.º 2
0
def test_segmented_rings():
    center = (75, 75)
    img_dim = (150, 140)
    first_q = 5
    delta_q = 5
    num_rings = 4  # number of Q rings
    slicing = 4

    edges = roi.ring_edges(first_q, width=delta_q, spacing=4,
                           num_rings=num_rings)
    print("edges", edges)

    label_array = roi.segmented_rings(edges, slicing, center,
                                      img_dim, offset_angle=0)
    print("label_array for segmented_rings", label_array)

    # Did we draw the right number of ROIs?
    label_list = np.unique(label_array.ravel())
    actual_num_labels = len(label_list) - 1
    num_labels = num_rings * slicing
    assert_equal(actual_num_labels, num_labels)

    # Did we draw the right ROIs? (1-16 with some zeros around too)
    assert_array_equal(label_list, np.arange(num_labels + 1))

    # A brittle test to make sure the exactly number of pixels per label
    # is never accidentally changed:
    # number of pixels per ROI
    num_pixels = np.bincount(label_array.ravel())
    expected_num_pixels = [18372, 59, 59, 59, 59, 129, 129, 129,
                           129, 200, 200, 200, 200, 269, 269, 269, 269]
    assert_array_equal(num_pixels, expected_num_pixels)
Exemplo n.º 3
0
def testCrossCorrelator2d():
    ''' Test the 2D case of the cross correlator.
        With non-binary labels.
    '''
    np.random.seed(123)
    # test 2D data
    Npoints2 = 10
    x2 = np.linspace(-10, 10, Npoints2)
    X, Y = np.meshgrid(x2, x2)
    Z = np.random.random((Npoints2, Npoints2))

    np.random.seed(123)
    sigma = .2
    # purposely have sparsely filled values (with lots of zeros)
    # place peaks in random positions
    peak_positions = (np.random.random((2, 10)) - .5) * 20
    for peak_position in peak_positions:
        Z += np.exp(-((X - peak_position[0])**2 + (Y - peak_position[1])**2) /
                    2. / sigma**2)

    mask_2D = np.ones_like(Z)
    mask_2D[1:2, 1:2] = 0
    mask_2D[7:9, 4:6] = 0
    mask_2D[1:2, 9:] = 0

    # Compute with segmented rings
    edges = ring_edges(1, 3, num_rings=2)
    segments = 5
    x0, y0 = np.array(mask_2D.shape) // 2

    maskids = segmented_rings(edges, segments, (y0, x0), mask_2D.shape)

    cc2D_ids = CrossCorrelator(mask_2D.shape, mask=maskids)
    cc2D_ids_symavg = CrossCorrelator(mask_2D.shape,
                                      mask=maskids,
                                      normalization='symavg')

    # 10 ids
    assert_equal(cc2D_ids.nids, 10)

    ycorr_ids_2D = cc2D_ids(Z)
    ycorr_ids_2D_symavg = cc2D_ids_symavg(Z)
    index = 0
    ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0] // 2]
    assert_array_almost_equal(
        ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0] // 2],
        np.array([1.22195059, 1.08685771, 1.43246508, 1.08685771, 1.22195059]))

    index = 1
    ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0] // 2]
    assert_array_almost_equal(
        ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0] // 2],
        np.array([1.24324268, 0.80748997, 1.35790022, 0.80748997, 1.24324268]))

    index = 0
    ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0] // 2]
    assert_array_almost_equal(
        ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0] // 2],
        np.array([0.84532695, 1.16405848, 1.43246508, 1.16405848, 0.84532695]))

    index = 1
    ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0] // 2]
    assert_array_almost_equal(
        ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0] // 2],
        np.array([0.94823482, 0.8629459, 1.35790022, 0.8629459, 0.94823482]))
Exemplo n.º 4
0
def testCrossCorrelator2d():
    ''' Test the 2D case of the cross correlator.
        With non-binary labels.
    '''
    np.random.seed(123)
    # test 2D data
    Npoints2 = 10
    x2 = np.linspace(-10, 10, Npoints2)
    X, Y = np.meshgrid(x2, x2)
    Z = np.random.random((Npoints2, Npoints2))

    np.random.seed(123)
    sigma = .2
    # purposely have sparsely filled values (with lots of zeros)
    # place peaks in random positions
    peak_positions = (np.random.random((2, 10))-.5)*20
    for peak_position in peak_positions:
        Z += np.exp(-((X - peak_position[0])**2 +
                    (Y - peak_position[1])**2)/2./sigma**2)

    mask_2D = np.ones_like(Z)
    mask_2D[1:2, 1:2] = 0
    mask_2D[7:9, 4:6] = 0
    mask_2D[1:2, 9:] = 0

    # Compute with segmented rings
    edges = ring_edges(1, 3, num_rings=2)
    segments = 5
    x0, y0 = np.array(mask_2D.shape)//2

    maskids = segmented_rings(edges, segments, (y0, x0), mask_2D.shape)

    cc2D_ids = CrossCorrelator(mask_2D.shape, mask=maskids)
    cc2D_ids_symavg = CrossCorrelator(mask_2D.shape, mask=maskids,
                                      normalization='symavg')

    # 10 ids
    assert_equal(cc2D_ids.nids, 10)

    ycorr_ids_2D = cc2D_ids(Z)
    ycorr_ids_2D_symavg = cc2D_ids_symavg(Z)
    index = 0
    ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0]//2]
    assert_array_almost_equal(ycorr_ids_2D[index]
                              [ycorr_ids_2D[index].shape[0]//2],
                              np.array([1.22195059, 1.08685771,
                                        1.43246508, 1.08685771, 1.22195059
                                        ])
                              )

    index = 1
    ycorr_ids_2D[index][ycorr_ids_2D[index].shape[0]//2]
    assert_array_almost_equal(ycorr_ids_2D[index]
                              [ycorr_ids_2D[index].shape[0]//2],
                              np.array([1.24324268, 0.80748997,
                                        1.35790022, 0.80748997, 1.24324268
                                        ])
                              )

    index = 0
    ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0]//2]
    assert_array_almost_equal(ycorr_ids_2D_symavg[index]
                              [ycorr_ids_2D[index].shape[0]//2],
                              np.array([0.84532695, 1.16405848, 1.43246508,
                                        1.16405848, 0.84532695])
                              )

    index = 1
    ycorr_ids_2D_symavg[index][ycorr_ids_2D[index].shape[0]//2]
    assert_array_almost_equal(ycorr_ids_2D_symavg[index]
                              [ycorr_ids_2D[index].shape[0]//2],
                              np.array([0.94823482, 0.8629459, 1.35790022,
                                        0.8629459, 0.94823482])
                              )