Exemplo n.º 1
0
def test_DecisionMatrixPlotter_wheatmap_default_axis(
    decision_matrix, fig_test, fig_ref
):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    with mock.patch("matplotlib.pyplot.gca", return_value=test_ax):
        plotter.wheatmap()

    # EXPECTED
    labels = [
        f"{c} {o.to_string()}" for c, o in zip(dm.criteria, dm.objectives)
    ]

    weights = dm.weights.to_frame().T

    exp_ax = fig_ref.subplots()
    sns.heatmap(weights, ax=exp_ax, annot=True, cmap=plt.cm.get_cmap())

    exp_ax.set_xticklabels(labels)
    exp_ax.set_xlabel("Criteria")

    size = fig_ref.get_size_inches() / [1, 5]
    fig_ref.set_size_inches(size)
Exemplo n.º 2
0
def test_DecisionMatrixPlotter_wheatmap(decision_matrix, fig_test, fig_ref):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    plotter.wheatmap(ax=test_ax)

    # EXPECTED
    labels = [
        f"{c} {o.to_string()}" for c, o in zip(dm.criteria, dm.objectives)
    ]

    weights = dm.weights.to_frame().T

    exp_ax = fig_ref.subplots()
    sns.heatmap(weights, ax=exp_ax, annot=True, cmap=plt.cm.get_cmap())

    exp_ax.set_xticklabels(labels)
    exp_ax.set_xlabel("Criteria")
Exemplo n.º 3
0
def test_DecisionMatrixPlotter_box(decision_matrix, orient, fig_test, fig_ref):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    plotter.box(ax=test_ax, orient=orient)

    # EXPECTED
    labels = [
        f"{c} {o.to_string()}" for c, o in zip(dm.criteria, dm.objectives)
    ]

    exp_ax = fig_ref.subplots()
    sns.boxplot(data=dm.matrix, ax=exp_ax, orient=orient)

    if orient == "v":
        exp_ax.set_xticklabels(labels)
        exp_ax.set_xlabel("Criteria")
    elif orient == "h":
        exp_ax.set_yticklabels(labels)
        exp_ax.set_ylabel("Criteria")
Exemplo n.º 4
0
def test_DecisionMatrixPlotter_wbar(decision_matrix, fig_test, fig_ref):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    plotter.wbar(ax=test_ax)

    # EXPECTED
    labels = [
        f"{c} {o.to_string()}" for c, o in zip(dm.criteria, dm.objectives)
    ]
    weights = dm.weights.to_frame().T

    exp_ax = fig_ref.subplots()
    weights.plot.bar(ax=exp_ax)

    exp_ax.set_xlabel("Alternatives")
    exp_ax.legend(labels)
Exemplo n.º 5
0
def test_DecisionMatrixPlotter_wogive(decision_matrix, fig_test, fig_ref):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    plotter.wogive(ax=test_ax)

    # EXPECTED
    weights = dm.weights.to_frame()

    exp_ax = fig_ref.subplots()
    sns.ecdfplot(data=weights, ax=exp_ax)
Exemplo n.º 6
0
def test_DecisionMatrixPlotter_ogive(decision_matrix, fig_test, fig_ref):
    dm = decision_matrix(
        seed=42,
        min_alternatives=3,
        max_alternatives=3,
        min_criteria=3,
        max_criteria=3,
    )

    plotter = plot.DecisionMatrixPlotter(dm=dm)

    test_ax = fig_test.subplots()
    plotter.ogive(ax=test_ax)

    # EXPECTED
    labels = [
        f"{c} {o.to_string()}" for c, o in zip(dm.criteria, dm.objectives)
    ]

    exp_ax = fig_ref.subplots()
    sns.ecdfplot(data=dm.matrix, ax=exp_ax)

    exp_ax.legend(labels)