Exemplo n.º 1
0
 def JMI(self):
     idx = JMI.jmi(self.X, self.y, n_selected_features=2)
     #selected_features_train = self.X_train[:, idx[0:self.num_fea]]
     #selected_features_test = self.X_test[:, idx[0:self.num_fea]]
     self.F1 = self.X[:, idx.item(0)]
     self.F2 = self.X[:, idx.item(1)]
     ttestt = stats.ttest_ind(self.F1, self.F2)
     return idx,ttestt
def jmi(data):
    rank = []
    for i in range(6):
        X = data[i][:, :-1]
        Y = data[i][:, -1]
        F, _, _ = JMI.jmi(X, Y)
        idx = samp(F[:-1].tolist())
        rank.append(idx)
    R = rankaggregate(rank)
    return R
Exemplo n.º 3
0
def jmi():
    before = datetime.datetime.now()
    result = JMI.jmi(data, labels, mode="index", n_selected_features=treshold)
    # algoritmus ma treshold ale pri testoch ho nedosiahol a vyberal vsetky hodnoty
    after = datetime.datetime.now()
    print("JMI")
    print(len(result))
    print("cas: " + str(after - before))
    print('\n')
    if len(result) < len(header):
        transform_and_save(result, "JMI")
def feature_joint_mutual_info(x_data, y_data):
    features_scores = JMI.jmi(x_data.values, y_data.values, n_selected_features=20)
    features_index = [int(index[0]) for index in features_scores]
    feat_list = x_data.columns.values[features_index]
    feat_list_with_imp = [(feat_list[i], features_scores[i][1]) for i in range(len(features_scores))]
    # dfscores = pd.DataFrame(features_scores)
    # dfcolumns = pd.DataFrame(x_data.columns)
    # featureScores = pd.concat([dfcolumns, dfscores], axis=1)
    featureScores = pd.DataFrame(feat_list_with_imp)
    featureScores.columns = ['Specs', 'Score']  # naming the dataframe columns
    top_20_features = featureScores.nlargest(20, 'Score')
    return top_20_features
def run_feature_selection(X, Y, n_selected_features):

    lst = []

    if PARALLEL:
        # with multiprocessing.Pool(processes=4) as pool:
        #     lst.append(pool.apply(JMI.jmi, args=(X, Y), kwds={'n_selected_features': n_selected_features}))
        #     lst.append(pool.apply(MIM.mim, args=(X, Y), kwds={'n_selected_features': n_selected_features}))
        #     lst.append(pool.apply(MRMR.mrmr, args=(X, Y), kwds={'n_selected_features': n_selected_features}))
        #     lst.append(pool.apply(MIFS.mifs, args=(X, Y), kwds={'n_selected_features': n_selected_features}))

        # lst = [l[FEAT_IDX] for l in lst]

        with ProcessPoolExecutor(max_workers=4) as executor:
            lst.append(
                executor.submit(JMI.jmi,
                                X,
                                Y,
                                n_selected_features=n_selected_features))
            lst.append(
                executor.submit(MIM.mim,
                                X,
                                Y,
                                n_selected_features=n_selected_features))
            lst.append(
                executor.submit(MRMR.mrmr,
                                X,
                                Y,
                                n_selected_features=n_selected_features))
            lst.append(
                executor.submit(MIFS.mifs,
                                X,
                                Y,
                                n_selected_features=n_selected_features))
        lst = [l.result()[FEAT_IDX] for l in lst]
    else:
        lst.append(
            JMI.jmi(X, Y, n_selected_features=n_selected_features)[FEAT_IDX])
        lst.append(
            MIM.mim(X, Y, n_selected_features=n_selected_features)[FEAT_IDX])
        lst.append(
            MRMR.mrmr(X, Y, n_selected_features=n_selected_features)[FEAT_IDX])
        lst.append(
            MIFS.mifs(X, Y, n_selected_features=n_selected_features)[FEAT_IDX])

    return lst
Exemplo n.º 6
0
def run_fold(trial,P,X,y,method,dataset,parttype):
    print 'Obtaining features for %s %s %s fold: %2d' % (parttype,method,dataset,trial)
    n_samples, n_features = X.shape
    train = P[:,trial] == 1
    trnX = X[train]
    trnY = y[train]

    start_time = time.time()
    if method == 'fisher': 
        score = fisher_score.fisher_score(trnX,trnY)
        features = fisher_score.feature_ranking(score)
    elif method == 'chi2':
        score = chi_square.chi_square(trnX,trnY)
        features = chi_square.feature_ranking(score)
    elif method == 'relieff':
        score = reliefF.reliefF(trnX,trnY)
        features = reliefF.feature_ranking(score)
    elif method == 'jmi':
        features = JMI.jmi(trnX,trnY,  n_selected_features=n_features)
    elif method == 'mrmr':
        features = MRMR.mrmr(trnX,trnY,n_selected_features=n_features)
    elif method == 'infogain':
        features = MIM.mim(trnX,trnY,n_selected_features=n_features)
    elif method == 'svmrfe':
        features = svmrfe(trnX,trnY)
    elif method == 'hdmr':
        sobol_set_all = scipy.io.loadmat('sobol_set.mat')
        sobol_set     = sobol_set_all['sobol_set']
        sobol_set     = sobol_set.astype(float)
        params = {'sobol_set':sobol_set,'k':1,'p':3,'M':1000,'b':'L'}
        models  = hdmrlearn(trnX,trnY,params)
        features,w = hdmrselect(X,models)
    elif method == 'hdmrhaar':
        sobol_set_all = scipy.io.loadmat('sobol_set.mat')
        sobol_set     = sobol_set_all['sobol_set']
        sobol_set     = sobol_set.astype(float)
        params = {'sobol_set':sobol_set,'k':1,'p':255,'M':1000,'b':'H'}
        models  = hdmrlearn(trnX,trnY,params)
        features,w = hdmrselect(X,models)
    else:
        print(method + 'does no exist')

    cputime = time.time() - start_time
    print features
    print 'cputime %f' % cputime
    return {'features': features, 'cputime': cputime}
Exemplo n.º 7
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/colon.mat')
    X = mat['X']  # data
    X = X.astype(float)
    y = mat['Y']  # label
    y = y[:, 0]
    n_samples, n_features = X.shape  # number of samples and number of features

    # split data into 10 folds
    ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True)

    # perform evaluation on classification task
    num_fea = 10  # number of selected features
    clf = svm.LinearSVC()  # linear SVM

    correct = 0
    for train, test in ss:
        # obtain the index of each feature on the training set
        idx, _, _ = JMI.jmi(X[train], y[train], n_selected_features=num_fea)

        # obtain the dataset on the selected features
        features = X[:, idx[0:num_fea]]

        # train a classification model with the selected features on the training dataset
        clf.fit(features[train], y[train])

        # predict the class labels of test data
        y_predict = clf.predict(features[test])

        # obtain the classification accuracy on the test data
        acc = accuracy_score(y[test], y_predict)
        correct = correct + acc

    # output the average classification accuracy over all 10 folds
    print('Accuracy:', float(correct) / 10)
Exemplo n.º 8
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/colon.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]
    n_samples, n_features = X.shape    # number of samples and number of features

    # split data into 10 folds
    ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True)

    # perform evaluation on classification task
    num_fea = 10    # number of selected features
    clf = svm.LinearSVC()    # linear SVM

    correct = 0
    for train, test in ss:
        # obtain the index of each feature on the training set
        idx,_,_ = JMI.jmi(X[train], y[train], n_selected_features=num_fea)

        # obtain the dataset on the selected features
        features = X[:, idx[0:num_fea]]

        # train a classification model with the selected features on the training dataset
        clf.fit(features[train], y[train])

        # predict the class labels of test data
        y_predict = clf.predict(features[test])

        # obtain the classification accuracy on the test data
        acc = accuracy_score(y[test], y_predict)
        correct = correct + acc

    # output the average classification accuracy over all 10 folds
    print 'Accuracy:', float(correct)/10
Exemplo n.º 9
0
def JMI_featureSelection(x, y):
    idx = JMI.jmi(x, y)
    rank = feature_ranking(idx)
    return rank
def experiment(data, box, cv, output):
    """
    Write the results of an experiment.
        This function will run an experiment for a specific dataset for a bounding box. 
        There will be CV runs of randomized experiments run and the outputs will be 
        written to a file. 

        Parameters
        ----------
        data : string
            Dataset name.
            
        box : string 
            Bounding box on the file name.
        cv : int 
            Number of cross validation runs. 
            
        output : string
            If float or tuple, the projection will be the same for all features,
            otherwise if a list, the projection will be described feature by feature.
                    
        Returns
        -------
        None
            
        Raises
        ------
        ValueError
            If the percent poison exceeds the number of samples in the requested data.
    """
    #data, box, cv, output = 'conn-bench-sonar-mines-rocks', '1', 5, 'results/test.npz'

    # load normal and adversarial data 
    path_adversarial_data = 'data/attacks/' + data + '_[xiao][' + box + '].csv'
    df_normal = pd.read_csv('data/clean/' + data + '.csv', header=None).values
    df_adversarial = pd.read_csv(path_adversarial_data, header=None).values
    
    # separate out the normal and adversarial data 
    Xn, yn = df_normal[:,:-1], df_normal[:,-1]
    Xa, ya = df_adversarial[:,:-1], df_adversarial[:,-1]
    
    # change the labels from +/-1 to [0,1]
    ya[ya==-1], yn[yn==-1] = 0, 0

    # calculate the rattios of data that would be used for training and hold out  
    p0, p1 = 1./cv, (1. - 1./cv)
    N = len(Xn)
    # calculate the total number of training and testing samples and set the number of 
    # features that are going to be selected 
    Ntr, Nte = int(p1*N), int(p0*N)                                             ##### [OBS]: Losing one feature in the process
    n_selected_features = int(Xn.shape[1]*SEL_PERCENT)+1
       
    # zero the results out 
    acc_KNN = np.zeros((NPR,6))
    ####################################
    # CLASSIFICATION
    ##################################
    
    # run `cv` randomized experiments. note this is not performing cross-validation, rather
    # we are going to use randomized splits of the data.  
    for _ in range(cv): 
        # shuffle up the data for the experiment then split the data into a training and 
        # testing dataset
        i = np.random.permutation(N)
        Xtrk, ytrk, Xtek, ytek = Xn[i][:Ntr], yn[i][:Ntr], Xn[i][-Nte:], yn[i][-Nte:]

        
        ####### Classification on Normal Data with no FS #######################
        yn_allfeature_KNN = KNN_classification(Xtrk, ytrk, Xtek, ytek)
           
        ####### Classification on JMI-based features on Normal data #############
        sf_base_jmi = JMI.jmi(Xtrk, ytrk, n_selected_features=n_selected_features)[FEAT_IDX]
        #print("\nNOR: JMI features", sf_base_jmi)
        Xtr_jmi = Xtrk[:, sf_base_jmi]
        Xte_jmi = Xtek[:, sf_base_jmi]
        yn_JMI_KNN = KNN_classification(Xtr_jmi, ytrk, Xte_jmi, ytek)
                
        for n in range(NPR): 

            # calucate the number of poisoned data that we are going to need to make sure 
            # that the poisoning ratio is correct in the training data. e.g., if you have 
            # N=100 samples and you want to poison by 20% then the 20% needs to be from 
            # the training size. hence it is not 20. 
            Np = int(len(ytrk)*POI_RNG[n]+1)
            if Np >= len(ya): 
                # shouldn't happen but catch the case where we are requesting more poison
                # data samples than are available. NEED TO BE CAREFUL WHEN WE ARE CREATING 
                # THE ADVERSARIAL DATA
                ValueError('Number of poison data requested is larger than the available data.')

            # find the number of normal samples (i.e., not poisoned) samples in the 
            # training data. then create the randomized data set that has Nn normal data
            # samples and Np adversarial samples in the training data
            Nn = len(ytrk) - Np
            idx_normal, idx_adversarial = np.random.permutation(len(ytrk))[:Nn], \
                                            np.random.permutation(len(ya))[:Np]
            Xtrk_poisoned, ytrk_poisoned = np.concatenate((Xtrk[idx_normal], Xa[idx_adversarial])), \
                                            np.concatenate((ytrk[idx_normal], ya[idx_adversarial]))   
            
            ya_allfeature_KNN = KNN_classification(Xtrk_poisoned, ytrk_poisoned, Xtek, ytek)
            
            # run feature selection with the training data that has adversarial samples
            sf_adv_jmi = JMI.jmi(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            sf_adv_mim = MIM.mim(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            sf_adv_mrmr = MRMR.mrmr(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            sf_adv_misf = MIFS.mifs(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            
            # KNN Classification on JMI selected features
            Xtrk_poisoned_JMI = Xtrk_poisoned[:, sf_adv_jmi]
            Xtest_JMI = Xtek[:, sf_adv_jmi]
            ya_JMI_KNN = KNN_classification(Xtrk_poisoned_JMI, ytrk_poisoned, Xtest_JMI, ytek)
            # KNN Classification on MIM selected features
            Xtrk_poisoned_MIM = Xtrk_poisoned[:, sf_adv_mim]
            Xtest_MIM = Xtek[:, sf_adv_mim]
            ya_MIM_KNN = KNN_classification(Xtrk_poisoned_MIM, ytrk_poisoned, Xtest_MIM, ytek)
            # KNN Classification on MRMR selected features
            Xtrk_poisoned_MRMR = Xtrk_poisoned[:, sf_adv_mrmr]
            Xtest_MRMR = Xtek[:, sf_adv_mrmr]
            ya_MRMR_KNN = KNN_classification(Xtrk_poisoned_MRMR, ytrk_poisoned, Xtest_MRMR, ytek)
            # KNN Classification on MISF selected features
            Xtrk_poisoned_MISF = Xtrk_poisoned[:, sf_adv_misf]
            Xtest_MISF = Xtek[:, sf_adv_misf]
            ya_MISF_KNN = KNN_classification(Xtrk_poisoned_MISF, ytrk_poisoned, Xtest_MISF, ytek)
            """
            ######### KNN Classification on adversarial data with no FS #################
            ya_allfeature_KNN = KNN_classification(Xtrk_poisoned, ytrk_poisoned, Xtek, ytek)
            #print("[ADV] KNN: No FS Confusion Matrix for Poisoning Ratio: ", POI_RNG[n], "\n", confusion_matrix(ytek, ya_allfeature_KNN))
            #print(classification_report(ytek, ya_allfeature_KNN))
            #print("[ADV] KNN: NO FS Accuracy for Poisoning ratio", POI_RNG[n], "\n",  accuracy_score(ytek, ya_allfeature_KNN))
            
            ######### KNN Classification on adversarial data with JMI FS #################
            sf_adv_jmi = JMI.jmi(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            Xtrk_poisoned_JMI = Xtrk_poisoned[:, sf_adv_jmi]
            Xtest_JMI = Xtek[:, sf_adv_jmi]
            
            ya_JMI_KNN = KNN_classification(Xtrk_poisoned_JMI, ytrk_poisoned, Xtest_JMI, ytek)
            #print("\nJMI Features: ", sf_adv_jmi)
            #print("[ADV] KNN: JMI FS Confusion Matrix for Poisoning Ratio: ", POI_RNG[n], "\n", confusion_matrix(ytek, ya_JMI_KNN))
            #print("[ADV] KNN: JMI Accuracy for Poisoning ratio", POI_RNG[n], "\n", accuracy_score(ytek, ya_JMI_KNN))
            
            ######### KNN Classification on adversarial data with MIM FS #################
            sf_adv_mim = MIM.mim(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            Xtrk_poisoned_MIM = Xtrk_poisoned[:, sf_adv_mim]
            Xtest_MIM = Xtek[:, sf_adv_mim]
            
            ya_MIM_KNN = KNN_classification(Xtrk_poisoned_MIM, ytrk_poisoned, Xtest_MIM, ytek)
            #print("\nMIM Features: ", sf_adv_mim)
            #print("[ADV] KNN: MIM FS Confusion Matrix for Poisoning Ratio: ", POI_RNG[n], "\n", confusion_matrix(ytek, ya_MIM_KNN))
            #print("[ADV] KNN: MIM Accuracy for Poisoning ratio", POI_RNG[n], "\n", accuracy_score(ytek, ya_MIM_KNN))
            
            ######### KNN Classification on adversarial data with MRMR FS #################
            sf_adv_mrmr = MRMR.mrmr(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            Xtrk_poisoned_MRMR = Xtrk_poisoned[:, sf_adv_mrmr]
            Xtest_MRMR = Xtek[:, sf_adv_mrmr]
            
            ya_MRMR_KNN = KNN_classification(Xtrk_poisoned_MRMR, ytrk_poisoned, Xtest_MRMR, ytek)
            #print("\nMRMR Features: ", sf_adv_mrmr)
            #print("[ADV] KNN: MRMR FS Confusion Matrix for Poisoning Ratio: ", POI_RNG[n], "\n", confusion_matrix(ytek, ya_MRMR_KNN))
            #print("[ADV] KNN: MRMR Accuracy for Poisoning ratio", POI_RNG[n], "\n", accuracy_score(ytek, ya_MRMR_KNN))
            
            ######### KNN Classification on adversarial data with MISF FS #################
            sf_adv_misf = MIFS.mifs(Xtrk_poisoned, ytrk_poisoned, n_selected_features=n_selected_features)[FEAT_IDX]
            Xtrk_poisoned_MISF = Xtrk_poisoned[:, sf_adv_misf]
            Xtest_MISF = Xtek[:, sf_adv_misf]
            
            ya_MISF_KNN = KNN_classification(Xtrk_poisoned_MISF, ytrk_poisoned, Xtest_MISF, ytek)
            #print("\nMISF Features: ", sf_adv_misf)
            #print("[ADV] KNN: MISF FS Confusion Matrix for Poisoning Ratio: ", POI_RNG[n], "\n", confusion_matrix(ytek, ya_MISF_KNN))
            #print("[ADV] KNN: MISF Accuracy for Poisoning ratio", POI_RNG[n], "\n", accuracy_score(ytek, ya_MISF_KNN))
            """
            # Calculate accumulated accuracy in a matrix of size 9x6
            acc_KNN[n, 0] += accuracy_score(ytek, yn_allfeature_KNN)    # Acc score of normal data without Feature Selection
            acc_KNN[n, 1] += accuracy_score(ytek, ya_allfeature_KNN)    # Acc score of adversarial data without Feature Selection
            acc_KNN[n, 2] += accuracy_score(ytek, ya_JMI_KNN)    # Acc score of adversarial data with JMI Feature Selection algo
            acc_KNN[n, 3] += accuracy_score(ytek, ya_MIM_KNN)    # Acc score of adversarial data with MIM Feature Selection algo
            acc_KNN[n, 4] += accuracy_score(ytek, ya_MRMR_KNN)    # Acc score of adversarial data with MRMR Feature Selection algo
            acc_KNN[n, 5] += accuracy_score(ytek, ya_MISF_KNN)    # Acc score of adversarial data with MISF Feature Selection algo
            
            
    #print(acc_KNN)
    # scale the accuracy statistics by 1.0/cv then write the output file
    acc_KNN = acc_KNN/cv
    print("\n Accuracy matrix of KNN")
    print("[COL]: Norm_noFS, Adv_noFS, Adv_JMI, Adv_MIM, Adv_MRMR, Adv_MISF")
    print("[ROW]: Poisoning ratios: 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2")
    print("\n", acc_KNN)
    
    np.savez(output, acc_KNN=acc_KNN)
    return None
Exemplo n.º 11
0
    c = c + 1
    r = 0

MV_sel = []
MV_sel.append(('MIM', MIM.mim(X_train, Y_train, n_selected_features=num_fea)))
print('MIM')
MV_sel.append(('MIFS', MIFS.mifs(X_train, Y_train,
                                 n_selected_features=num_fea)))
print('MIFS')
MV_sel.append(('MRMR', MRMR.mrmr(X_train, Y_train,
                                 n_selected_features=num_fea)))
print('MRMR')
MV_sel.append(('CIFE', CIFE.cife(X_train, Y_train,
                                 n_selected_features=num_fea)))
print('CIFE')
MV_sel.append(('JMI', JMI.jmi(X_train, Y_train, n_selected_features=num_fea)))
print('JMI')
MV_sel.append(('CMIM', CMIM.cmim(X_train, Y_train,
                                 n_selected_features=num_fea)))
print('CMIM')
MV_sel.append(('ICAP', ICAP.icap(X_train, Y_train,
                                 n_selected_features=num_fea)))
print('ICAP')
MV_sel.append(('DISR', DISR.disr(X_train, Y_train,
                                 n_selected_features=num_fea)))

for name, model in models:
    for kind, idx in MV_sel:
        #print(idx[0:num_fea][0])
        # X_sel = X[:, idx[0:num_fea]]
        X_test_ = X_test[:, idx[0:num_fea]]
from sklearn.feature_selection import RFE
from sklearn.svm import SVR

bestFeat = SelectKBest()
bestFeat.fit(train_X, train_Y)
feat_scr = zip(feats, bestFeat.scores_)
feat_scr = [f for f in feat_scr if not np.isnan(f[1])]
sorted_fetas = sorted(feat_scr, key=lambda k: k[1], reverse=True)

# estimator = SVR(kernel="linear")
# selector = RFE(estimator, 5, step=1)
# selector.fit(train_X, train_Y)  # slow

from sklearn.ensemble import GradientBoostingClassifier
g_cls = GradientBoostingClassifier(n_estimators=10)
g_cls.fit(train_X, train_Y)
g_feats = g_cls.feature_importances_
g_feat_scr = zip(feats, g_feats)
g_feat_scr = [f for f in g_feat_scr if not np.isnan(f[1])]
g_sorted_fetas = sorted(g_feat_scr, key=lambda k: k[1], reverse=True)

from skfeature.function.information_theoretical_based import FCBF, LCSI, MRMR, JMI
score = FCBF.fcbf(train_X, train_Y)
fcbf_sorted = [feats[i] for i in score]

score = MRMR.mrmr(train_X, train_Y, n_selected_features=50)
MRMR_sorted = [feats[i] for i in score]

score = JMI.jmi(train_X, train_Y, n_selected_features=50)
JMI_sorted = [feats[i] for i in score]
bestFeat.fit(train_X, train_Y)
feat_scr = zip(feats,bestFeat.scores_)
feat_scr = [f for f in feat_scr if not np.isnan(f[1])]
sorted_fetas = sorted(feat_scr, key=lambda k:k[1], reverse=True)

# estimator = SVR(kernel="linear")
# selector = RFE(estimator, 5, step=1)
# selector.fit(train_X, train_Y)  # slow

from sklearn.ensemble import GradientBoostingClassifier
g_cls = GradientBoostingClassifier(n_estimators=10)
g_cls.fit(train_X, train_Y)
g_feats = g_cls.feature_importances_
g_feat_scr = zip(feats,g_feats)
g_feat_scr = [f for f in g_feat_scr if not np.isnan(f[1])]
g_sorted_fetas = sorted(g_feat_scr, key=lambda k:k[1], reverse=True)


 
from skfeature.function.information_theoretical_based import FCBF, LCSI, MRMR, JMI
score = FCBF.fcbf(train_X, train_Y) 
fcbf_sorted= [feats[i] for i in score]

score = MRMR.mrmr(train_X, train_Y, n_selected_features = 50) 
MRMR_sorted= [feats[i] for i in score]

score = JMI.jmi(train_X, train_Y, n_selected_features = 50) 
JMI_sorted= [feats[i] for i in score]


Exemplo n.º 14
0
    return idx


# MULTIVARIATE FEATURE SELECTION X CLASSIFICATION (10 fold CV)

# print('BEFORE')
MV_sel = []
MV_sel.append(('WLCX', WLCX(X, Y, n_selected_features=num_fea)))
print('WLCX')
MV_sel.append(('MIFS', MIFS.mifs(X, Y, n_selected_features=num_fea)))
print('MIFS')
MV_sel.append(('MRMR', MRMR.mrmr(X, Y, n_selected_features=num_fea)))
print('MRMR')
MV_sel.append(('CIFE', CIFE.cife(X, Y, n_selected_features=num_fea)))
print('CIFE')
MV_sel.append(('JMI', JMI.jmi(X, Y, n_selected_features=num_fea)))
print('JMI')
MV_sel.append(('CMIM', CMIM.cmim(X, Y, n_selected_features=num_fea)))
print('CMIM')
MV_sel.append(('ICAP', ICAP.icap(X, Y, n_selected_features=num_fea)))
print('ICAP')
MV_sel.append(('DISR', DISR.disr(X, Y, n_selected_features=num_fea)))
for name, model in models:
    for kind, idx in MV_sel:
        # X_sel = X[:, idx[0:num_fea]]
        # X_test_ = X_test[:,idx[0:num_fea]]
        X_train_ = X_train[:, idx[0:num_fea]]
        # X_validation_ = X_validation[:, idx[0:num_fea]]
        # X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X_sel, Y, test_size=validation_size, random_state=seed)
        # kfold = model_selection.KFold(n_splits=10, random_state=seed)
Exemplo n.º 15
0
    result = pymrmr.mRMR(X, 'MIQ', 10)
    print(result)


def import_Data():
    Data = pd.read_csv('Disease_Data_BiGram.csv')
    # print(Data.shape)

    X = Data.iloc[:, 0:Data.shape[1] - 2]

    Y = Data['Class']
    Y_ = Data['Subject']

    return X, Y, Y_


FS = {}
X, Y, Y_ = import_Data()

FS['MRMR'] = X.columns[MRMR.mrmr(np.array(X), Y_, n_selected_features=15)[:15]]
FS['JMI'] = X.columns[JMI.jmi(np.array(X), Y_, n_selected_features=15)[:15]]
FS['MIFS'] = X.columns[MIFS.mifs(np.array(X), Y_, n_selected_features=15)[:15]]
FS['MIM'] = X.columns[MIM.mim(np.array(X), Y_, n_selected_features=15)[:15]]

FS = pd.DataFrame(FS)
print(FS)
FS.to_csv('Selected_Features_MultiVar_BiG.csv')

#print(pd.DataFrame(FS))
#model = apply_Model(X,Y_)