Exemplo n.º 1
1
def autolevels(image,minPercent=2,maxPercent=98,funcName='mean',perChannel=False):
    '''
    Rescale intensity of an image. For RGB images, the new limits are calculated 
    per channel and then mean or median of these limits are applied to the whole 
    image (if perChannel option is False).
    '''
    # dictionary of functions
    funcs = {'mean':np.mean,'median':np.median,'min':np.min,'max':np.max}
    
    # calculate percentiles (returns 3 values for RGB pictures or vectors, 1 for grayscale images)
    if image.shape[1] == 3:
        pMin,pMax = np.percentile(image,(minPercent, maxPercent),axis=0)
    else:
        pMin,pMax = np.percentile(image,(minPercent, maxPercent),axis=(0,1))

    # Apply normalisation
    if not perChannel: # finds new min and max using selected function applied to all channels
        newMin = funcs[funcName](pMin)
        newMax = funcs[funcName](pMax)
        auto = exposure.rescale_intensity(image,in_range=(newMin,newMax)) 

    else: # applies a rescale on each channel separately
        r_channel = exposure.rescale_intensity(image[:,:,0], in_range=(pMin[0],pMax[0])) 
        g_channel = exposure.rescale_intensity(image[:,:,1], in_range=(pMin[1],pMax[1])) 
        b_channel = exposure.rescale_intensity(image[:,:,2], in_range=(pMin[2],pMax[2])) 
        auto = np.stack((r_channel,g_channel,b_channel),axis=2)

    return auto 
Exemplo n.º 2
0
def edge():

	#plt.switch_backend('MacOSX')
	image = io.imread(path + "bibme0.png")
	print type(image)
	print image.shape
#	edge_roberts = roberts(image)
#	edge_sobel = sobel(image)

	fig = plt.figure(figsize=(14, 7))
	ax_each = fig.add_subplot(121, adjustable='box-forced')
	ax_hsv = fig.add_subplot(122, sharex=ax_each, sharey=ax_each,
	                         adjustable='box-forced')

	# We use 1 - sobel_each(image)
	# but this will not work if image is not normalized
	ax_each.imshow(rescale_intensity(1 - sobel_gray(image)), cmap=plt.cm.gray)
	#ax_each.imshow(sobel_each(image))
	ax_each.set_xticks([]), ax_each.set_yticks([])
	ax_each.set_title("Sobel filter computed\n on individual RGB channels")
	
	
	# We use 1 - sobel_hsv(image) but this will not work if image is not normalized
	ax_hsv.imshow(rescale_intensity(1 - sobel_gray(image)), cmap=plt.cm.gray)
	ax_hsv.set_xticks([]), ax_hsv.set_yticks([])
	ax_hsv.set_title("Sobel filter computed\n on (V)alue converted image (HSV)")
	
	fig.savefig(out_path + 'sobel_gray.png')
	plt.show()
Exemplo n.º 3
0
	def handle(self, *args, **options):
		# vars
		experiment_name = options['expt']
		series_name = options['series']
		t = options['t']

		if experiment_name!='' and series_name!='':
			experiment = Experiment.objects.get(name=experiment_name)
			series = experiment.series.get(name=series_name)

			# select composite
			composite = series.composites.get()

			zmean = exposure.rescale_intensity(composite.gons.get(channel__name='-zmean', t=t).load() * 1.0)
			zmod = exposure.rescale_intensity(composite.gons.get(channel__name='-zmod', t=t).load() * 1.0)

			zdiff = np.zeros(zmean.shape)
			for unique in np.unique(zmod):
				print(unique, len(np.unique(zmod)))
				zdiff[zmod==unique] = np.mean(zmean[zmod==unique]) / np.sum(zmean)

			plt.imshow(zdiff, cmap='Greys_r')
			plt.show()

			# imsave('zdiff.tiff', zdiff)

		else:
			print('Please enter an experiment')
Exemplo n.º 4
0
def mod_zedge(composite, mod_id, algorithm, **kwargs):

    zedge_channel, zedge_channel_created = composite.channels.get_or_create(name="-zedge")

    for t in range(composite.series.ts):
        print("step02 | processing mod_zedge t{}/{}...".format(t + 1, composite.series.ts), end="\r")

        zdiff_mask = composite.masks.get(channel__name__contains=kwargs["channel_unique_override"], t=t).load()
        zbf = exposure.rescale_intensity(composite.gons.get(channel__name="-zbf", t=t).load() * 1.0)
        zedge = zbf.copy()

        binary_mask = zdiff_mask > 0
        outside_edge = distance_transform_edt(dilate(edge_image(binary_mask), iterations=4))
        outside_edge = 1.0 - exposure.rescale_intensity(outside_edge * 1.0)
        zedge *= outside_edge * outside_edge

        zedge_gon, zedge_gon_created = composite.gons.get_or_create(
            experiment=composite.experiment, series=composite.series, channel=zedge_channel, t=t
        )
        zedge_gon.set_origin(0, 0, 0, t)
        zedge_gon.set_extent(composite.series.rs, composite.series.cs, 1)

        zedge_gon.array = zedge.copy()
        zedge_gon.save_array(composite.series.experiment.composite_path, composite.templates.get(name="source"))
        zedge_gon.save()
Exemplo n.º 5
0
    def _write_image(self, img_data, filename, img_format=None, dtype=None):
        """
        Output image data to a file, in a given image format.
        Assumes that the output directory exists (must be checked before).

        @param img_data :: image data in the usual numpy representation
        @param filename :: file name, including directory and extension
        @param img_format :: image file format
        @param dtype :: can be used to force a pixel type, otherwise the type
                        of the input data is used

        Returns:: name of the file saved
        """
        if not img_format:
            img_format = self.default_out_format
        filename = filename + '.' + img_format

        if dtype and img_data.dtype != dtype:
            img_data = np.array(img_data, dtype=dtype)

        if img_format == 'tiff' and _USING_PLUGIN_TIFFFILE:
            img_data = exposure.rescale_intensity(img_data, out_range='uint16')
            skio.imsave(filename, img_data, plugin='tifffile')
        else:
            img_data = exposure.rescale_intensity(img_data, out_range='uint16')
            skio.imsave(filename, img_data)

        return filename
Exemplo n.º 6
0
def rgb2he2(img):
    # This implementation follows http://web.hku.hk/~ccsigma/color-deconv/color-deconv.html

    assert (img.ndim == 3)
    assert (img.shape[2] == 3)

    height, width, _ = img.shape

    img = -np.log((img + 1.0) / img.max())

    # the following lines are replaced with the final result,
    # to speed up computations
    #
    # he = np.array([0.550, 0.758, 0.351]); he /= norm(he)
    # eo = np.array([0.398, 0.634, 0.600]); eo /= norm(eo)
    # bg = np.array([0.754, 0.077, 0.652]); bg /= norm(bg)
    #
    # M = np.hstack((he.reshape(3,1), eo.reshape(3,1), bg.reshape(3,1)))
    # D = alg.inv(M)
    #
    D = np.array([[ 1.92129515,  1.00941672, -2.34107612],
                  [-2.34500192,  0.47155124,  2.65616872],
                  [ 1.21495282, -0.99544467,  0.2459345 ]])

    rgb = img.swapaxes(2, 0).reshape((3, height*width))
    heb = np.dot(D, rgb)
    res_img = heb.reshape((3, width, height)).swapaxes(0, 2)

    return rescale_intensity(res_img[:,:,0], out_range=(0,1)), \
           rescale_intensity(res_img[:,:,1], out_range=(0,1)), \
           rescale_intensity(res_img[:,:,2], out_range=(0,1))
Exemplo n.º 7
0
def juntarcanais(c1, c2):


    h = exposure.rescale_intensity(c1, out_range=(0, 1))
    d = exposure.rescale_intensity(c2, out_range=(0, 1))
    zdh = np.dstack((np.zeros_like(h), d, h))

    return zdh
Exemplo n.º 8
0
	def handle(self, *args, **options):
		# vars
		experiment_name = options['expt']
		series_name = options['series']
		t = options['t']

		R = 1
		delta_z = -8
		# sigma = 5

		if experiment_name!='' and series_name!='':
			experiment = Experiment.objects.get(name=experiment_name)
			series = experiment.series.get(name=series_name)

			# select composite
			composite = series.composites.get()

			# load gfp
			gfp_gon = composite.gons.get(t=t, channel__name='0')
			gfp_start = exposure.rescale_intensity(gfp_gon.load() * 1.0)
			print('loaded gfp...')

			# load bf
			bf_gon = composite.gons.get(t=t, channel__name='1')
			bf = exposure.rescale_intensity(bf_gon.load() * 1.0)
			print('loaded bf...')

			for sigma in [0, 5, 10, 20]:
				gfp = gf(gfp_start, sigma=sigma) # <<< SMOOTHING
				for level in range(gfp.shape[2]):
					print('level {} {}...'.format(R, level))
					gfp[:,:,level] = convolve(gfp[:,:,level], np.ones((R,R)))

				# initialise images
				Z = np.zeros(composite.series.shape(d=2), dtype=int)
				Zmean = np.zeros(composite.series.shape(d=2))
				Zbf = np.zeros(composite.series.shape(d=2))

				Z = np.argmax(gfp, axis=2) + delta_z

				# outliers
				Z[Z<0] = 0
				Z[Z>composite.series.zs-1] = composite.series.zs-1

				for level in range(bf.shape[2]):
					print('level {}...'.format(level))
					bf_level = bf[:,:,level]
					Zbf[Z==level] = bf_level[Z==level]

				Zmean = 1 - np.mean(gfp, axis=2) / np.max(gfp, axis=2)

				imsave('zbf_R-{}_sigma-{}_delta_z{}.png'.format(R, sigma, delta_z), Zbf)

			# plt.imshow(Zbf, cmap='Greys_r')
			# plt.show()

		else:
			print('Please enter an experiment')
Exemplo n.º 9
0
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
                       nbins=256):
    """Contrast Limited Adaptive Histogram Equalization.

    Parameters
    ----------
    image : array-like
        Input image.
    ntiles_x : int, optional
        Number of tile regions in the X direction.  Ranges between 2 and 16.
    ntiles_y : int, optional
        Number of tile regions in the Y direction.  Ranges between 2 and 16.
    clip_limit : float: optional
        Clipping limit, normalized between 0 and 1 (higher values give more
        contrast).
    nbins : int, optional
        Number of gray bins for histogram ("dynamic range").

    Returns
    -------
    out : ndarray
        Equalized image.

    Notes
    -----
    * The algorithm relies on an image whose rows and columns are even
      multiples of the number of tiles, so the extra rows and columns are left
      at their original values, thus  preserving the input image shape.
    * For color images, the following steps are performed:
       - The image is converted to LAB color space
       - The CLAHE algorithm is run on the L channel
       - The image is converted back to RGB space and returned
    * For RGBA images, the original alpha channel is removed.

    References
    ----------
    .. [1] http://tog.acm.org/resources/GraphicsGems/gems.html#gemsvi
    .. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
    """
    args = [None, ntiles_x, ntiles_y, clip_limit * nbins, nbins]
    if image.ndim > 2:
        lab_img = color.rgb2lab(skimage.img_as_float(image))
        l_chan = lab_img[:, :, 0]
        l_chan /= np.max(np.abs(l_chan))
        l_chan = skimage.img_as_uint(l_chan)
        args[0] = rescale_intensity(l_chan, out_range=(0, NR_OF_GREY - 1))
        new_l = _clahe(*args).astype(float)
        new_l = rescale_intensity(new_l, out_range=(0, 100))
        lab_img[:new_l.shape[0], :new_l.shape[1], 0] = new_l
        image = color.lab2rgb(lab_img)
        image = rescale_intensity(image, out_range=(0, 1))
    else:
        image = skimage.img_as_uint(image)
        args[0] = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
        out = _clahe(*args)
        image[:out.shape[0], :out.shape[1]] = out
        image = rescale_intensity(image)
    return image
Exemplo n.º 10
0
 def _color_correction(self, band, band_id, low, coverage):
     self.output("Color correcting band %s" % band_id, normal=True, color='green', indent=1)
     p_low, cloud_cut_low = self._percent_cut(band, low, 100 - (coverage * 3 / 4))
     temp = numpy.zeros(numpy.shape(band), dtype=numpy.uint16)
     cloud_divide = 65000 - coverage * 100
     mask = numpy.logical_and(band < cloud_cut_low, band > 0)
     temp[mask] = rescale_intensity(band[mask], in_range=(p_low, cloud_cut_low), out_range=(256, cloud_divide))
     temp[band >= cloud_cut_low] = rescale_intensity(band[band >= cloud_cut_low], out_range=(cloud_divide, 65535))
     return temp
Exemplo n.º 11
0
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
                       nbins=256):
    args = [None, ntiles_x, ntiles_y, clip_limit * nbins, nbins]
    image = skimage.img_as_uint(image)
    args[0] = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
    out = _clahe(*args)
    image[:out.shape[0], :out.shape[1]] = out
    image = rescale_intensity(image)
    return image
Exemplo n.º 12
0
def equalize_adapthist(image, ntiles_x=8, ntiles_y=8, clip_limit=0.01,
                       nbins=256):
    """Contrast Limited Adaptive Histogram Equalization (CLAHE).

    An algorithm for local contrast enhancement, that uses histograms computed
    over different tile regions of the image. Local details can therefore be
    enhanced even in regions that are darker or lighter than most of the image.

    Parameters
    ----------
    image : array-like
        Input image.
    ntiles_x : int, optional
        Number of tile regions in the X direction.  Ranges between 1 and 16.
    ntiles_y : int, optional
        Number of tile regions in the Y direction.  Ranges between 1 and 16.
    clip_limit : float: optional
        Clipping limit, normalized between 0 and 1 (higher values give more
        contrast).
    nbins : int, optional
        Number of gray bins for histogram ("dynamic range").

    Returns
    -------
    out : ndarray
        Equalized image.

    See Also
    --------
    equalize_hist, rescale_intensity

    Notes
    -----
    * For color images, the following steps are performed:
       - The image is converted to HSV color space
       - The CLAHE algorithm is run on the V (Value) channel
       - The image is converted back to RGB space and returned
    * For RGBA images, the original alpha channel is removed.
    * The CLAHE algorithm relies on image blocks of equal size.  This may
      result in extra border pixels that would not be handled.  In that case,
      we pad the image with a repeat of the border pixels, apply the
      algorithm, and then trim the image to original size.

    References
    ----------
    .. [1] http://tog.acm.org/resources/GraphicsGems/gems.html#gemsvi
    .. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
    """
    image = skimage.img_as_uint(image)
    image = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
    out = _clahe(image, ntiles_x, ntiles_y, clip_limit * nbins, nbins)
    image[:out.shape[0], :out.shape[1]] = out
    image = skimage.img_as_float(image)
    return rescale_intensity(image)
Exemplo n.º 13
0
Arquivo: core.py Projeto: gb119/kermit
 def _get_scalebar(self):
     """Get the length in pixels of the image scale bar"""
     box=(0,419,519,520) #row where scalebar exists
     im=self.crop_image(box=box, copy=True)
     im=skimage.img_as_float(im)
     im=exposure.rescale_intensity(im,in_range=(0.49,0.5)) #saturate black and white pixels
     im=exposure.rescale_intensity(im) #make sure they're black and white
     im=np.diff(im[0]) #1d numpy array, differences
     lim=[np.where(im>0.9)[0][0],
          np.where(im<-0.9)[0][0]] #first occurance of both cases
     assert len(lim)==2, 'Couldn\'t find scalebar'
     return lim[1]-lim[0]
Exemplo n.º 14
0
def watershed(image):
    """ the watershed algorithm """
    if len(image.shape) != 2:
        raise TypeError("The input image must be gray-scale ")

    h, w = image.shape
    image = cv2.equalizeHist(image)
    image = denoise_bilateral(image, sigma_range=0.1, sigma_spatial=10)
    image = rescale_intensity(image)
    image = img_as_ubyte(image)
    image = rescale_intensity(image)
    # com.debug_im(image)

    _, thres = cv2.threshold(image, 80, 255, cv2.THRESH_BINARY_INV)

    distance = ndi.distance_transform_edt(thres)
    local_maxi = peak_local_max(distance, indices=False,
                                labels=thres,
                                min_distance=5)

    # com.debug_im(thres)
    # implt = plt.imshow(-distance, cmap=plt.cm.jet, interpolation='nearest')
    # plt.show()

    markers = ndi.label(local_maxi, np.ones((3, 3)))[0]
    labels = ws(-distance, markers, mask=thres)
    labels = np.uint8(labels)
    # result = np.round(255.0 / np.amax(labels) * labels).astype(np.uint8)
    # com.debug_im(result)

    segments = []
    for idx in range(1, np.amax(labels) + 1):

        indices = np.where(labels == idx)
        left = np.amin(indices[1])
        right = np.amax(indices[1])
        top = np.amin(indices[0])
        down = np.amax(indices[0])

        # region = labels[top:down, left:right]
        # m = (region > 0) & (region != idx)
        # region[m] = 0
        # region[region >= 1] = 1
        region = image[top:down, left:right]
        cont = Contour(mask=region)
        cont.lt = [left, top]
        cont.rb = [right, down]
        segments.append(cont)

    return segments
Exemplo n.º 15
0
def rescale_img(image, **kwargs):
    """
    Rescale image values between minimum and maximum cut levels to
    values between 0 and 1, inclusive.

    Parameters
    ----------
    image : array_like
        The 2D array of the image.

    {cutlevel_params}

    Returns
    -------
    out : tuple
        Returns a tuple containing (``outimg``, ``min_cut``,
        ``max_cut``), which are the output scaled image and the minimum
        and maximum cut levels.
    """

    from skimage import exposure
    image = image.astype(np.float64)
    min_cut, max_cut = find_imgcuts(image, **kwargs)
    outimg = exposure.rescale_intensity(image, in_range=(min_cut, max_cut),
                                        out_range=(0, 1))
    return outimg, min_cut, max_cut
Exemplo n.º 16
0
def saveimage_16bit(image,
                    fname='Test.tif',
                    folder=None,
                    rescale=True,
                    dtype=np.uint16,
                    imager=None):
    '''
    Saves an images as a 16 bit tiff
    '''

    # rotate the reverse direction
    image = tf.rotate(image, -1 * _imager_rot[imager])

    # if scaled to 0,1 then rescale back to 16 bit
    if rescale:
        # print 'rescaled'
        image = rescale_intensity(
            image, in_range=(0, 1), out_range=(0, 2**16))

    # Ensureing all the values are integers
    image = image.astype(dtype)

    folder = folder or ''

    image = io.imsave(
        os.path.join(folder, fname), image)
Exemplo n.º 17
0
def main():
	args = vars(parser.parse_args())
	filename = os.path.join(os.getcwd(), args["image"][0])

	image = skimage.img_as_uint(color.rgb2gray(io.imread(filename)))

	subsample = 1

	if (not args["subsample"] == 1):
		subsample = args["subsample"][0]

		image = transform.downscale_local_mean(image, (subsample, subsample))
		image = transform.pyramid_expand(image, subsample, 0, 0)

	image = exposure.rescale_intensity(image, out_range=(0,args["depth"][0]))

	if (args["visualize"]):
		io.imshow(image)
		io.show()

	source = generate_face(image, subsample, args["depth"][0], FLICKER_SPEED)

	if source:
		with open(args["output"][0], 'w') as file_:
			file_.write(source)
	else:
		print "Attempted to generate source code, failed."
Exemplo n.º 18
0
def mpl_image_to_rgba(mpl_image):
    """Return RGB image from the given matplotlib image object.

    Each image in a matplotlib figure has its own colormap and normalization
    function. Return RGBA (RGB + alpha channel) image with float dtype.

    Parameters
    ----------
    mpl_image : matplotlib.image.AxesImage object
        The image being converted.

    Returns
    -------
    img : array of float, shape (M, N, 4)
        An image of float values in [0, 1].
    """
    image = mpl_image.get_array()
    if image.ndim == 2:
        input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax)
        image = rescale_intensity(image, in_range=input_range)
        # cmap complains on bool arrays
        image = mpl_image.cmap(img_as_float(image))
    elif image.ndim == 3 and image.shape[2] == 3:
        # add alpha channel if it's missing
        image = np.dstack((image, np.ones_like(image)))
    return img_as_float(image)
Exemplo n.º 19
0
def proc_mbi(imgarray):
    # Normalize image:
    img = img_as_float(imgarray,force_copy=True)
    # Image equalization (Contrast stretching):
    p2,p98 = np.percentile(img, (2,98))
    img = exposure.rescale_intensity(img, in_range=(p2, p98), out_range=(0, 1))
    # Gamma correction:
    #img = exposure.adjust_gamma(img, 0.5)
    # Or Sigmoid correction:
    img = exposure.adjust_sigmoid(img)
    
    print "Init Morph Proc..."
    sizes = range(2,40,5)
    angles = [0,18,36,54,72,90,108,126,144,162]
    szimg = img.shape
    all_thr = np.zeros((len(sizes),szimg[0], szimg[1])).astype('float64')
    all_dmp = np.zeros((len(sizes) - 1,szimg[0], szimg[1])).astype('float64')
    
    idx = 0
    for sz in sizes:
        print sz
        builds_by_size = np.zeros(szimg).astype('float64')
        for ang in angles:
            print ang
            stel = ia870.iaseline(sz, ang)
            oprec = opening_by_reconstruction(img, stel)
            thr = np.absolute(img-oprec)
            builds_by_size += thr
        all_thr[idx,:,:] = (builds_by_size / len(angles))
        if idx>0:
            all_dmp[idx-1,:,:] = all_thr[idx,:,:] - all_thr[idx-1,:,:]
        idx += 1
    mbi = np.mean(all_dmp, axis=0)
    return mbi
def plot_aop_rgb(rgbArray,ext,ls_pct=5,plot_title=''):
    
    ''' read in and plot 3 bands of a reflectance array as an RGB image
    --------
    Parameters
    --------
        rgbArray: ndarray (m x n x 3)
            3-band array of reflectance values, created from stack_rgb
        ext: tuple
            Extent of reflectance data to be plotted (xMin, xMax, yMin, yMax) 
            Stored in metadata['spatial extent'] from aop_h5refl2array function
        ls_pct: integer or float, optional
            linear stretch percent
        plot_title: string, optional
            image title

    Returns 
    --------
        plots RGB image of 3 bands of reflectance data
    --------

    Examples:
    --------
    >>> plot_aop_rgb(SERCrgb,
                     sercMetadata['spatial extent'],
                     plot_title = 'SERC RGB')'''
    
    pLow, pHigh = np.percentile(rgbArray[~np.isnan(rgbArray)], (ls_pct,100-ls_pct))
    img_rescale = exposure.rescale_intensity(rgbArray, in_range=(pLow,pHigh))
    plt.imshow(img_rescale,extent=ext)
    plt.title(plot_title + '\n Linear ' + str(ls_pct) + '% Contrast Stretch'); 
    ax = plt.gca(); ax.ticklabel_format(useOffset=False, style='plain') 
    rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) 
Exemplo n.º 21
0
	def remove_background(self):
		L_b = 3
		self.i_original = self.i_original[self.sub[1]:self.sub[3],self.sub[0]:self.sub[2],]
		segments = slic(self.i_original, n_segments=2, compactness=0.1,enforce_connectivity=False)
#		segments += 1
		temp = self.i_original
		if sum(sum(segments[:5,:5])) > 10:
			for ii in range(0,3):
				temp[:,:,ii] = (np.ones([self.i_original.shape[0],self.i_original.shape[1]])-segments)*self.i_original[:,:,ii]
				#Haut, Bas, Droite, Gauche
				temp[:L_b,:,ii] = 0
				temp[self.i_original.shape[0]-L_b-1:self.i_original.shape[0]-1,:,ii]=0
				temp[:,self.i_original.shape[1]-L_b-1:self.i_original.shape[1]-1,ii] = 0
				temp[:,:L_b,ii] = 0
		else:
			for ii in range(0,3):
				temp[:,:,ii] = segments*self.i_original[:,:,ii]
#				print "else"
				#Haut, Bas, Droite, Gauche
				temp[:L_b,:,ii] = 0
				temp[self.i_original.shape[0]-L_b-1:self.i_original.shape[0]-1,:,ii]=0
				temp[:,self.i_original.shape[1]-L_b-1:self.i_original.shape[1]-1,ii] = 0
				temp[:,:L_b,ii] = 0
#		pdb.set_trace()
		fig, ax = plt.subplots(1, 1)
		ax.imshow(mark_boundaries(self.i_original,segments))
		ax.imshow(temp)
		plt.show()
		p2, p98 = np.percentile(temp, (2, 98))
		temp = exposure.rescale_intensity(temp, in_range=(p2, p98))
		return temp
Exemplo n.º 22
0
    def _preprocess(self, frame, stretch_intensity=True, blur=1, denoise=0):
        """
            1. convert frame to grayscale
            2. remove noise from frame. increase denoise value for more noise filtering
            3. stretch contrast
        """
        if len(frame.shape) != 2:
            frm = grayspace(frame)
        else:
            frm = frame / self.pixel_depth * 255

        frm = frm.astype('uint8')

        # self.preprocessed_frame = frame
        # if denoise:
        #     frm = self._denoise(frm, weight=denoise)
        # print 'gray', frm.shape
        if blur:
            frm = gaussian(frm, blur) * 255
            frm = frm.astype('uint8')

            # frm1 = gaussian(self.preprocessed_frame, blur,
            #                 multichannel=True) * 255
            # self.preprocessed_frame = frm1.astype('uint8')

        if stretch_intensity:
            frm = rescale_intensity(frm)
            # frm = self._contrast_equalization(frm)
            # self.preprocessed_frame = self._contrast_equalization(self.preprocessed_frame)

        return frm
Exemplo n.º 23
0
def Image_ws_tranche(image):
    
    laser = Detect_laser(image)
    laser_tranche = tranche_image(laser,60)
    
    image_g = skimage.color.rgb2gray(image)
    image_g = image_g * laser_tranche
    
    image_med = rank2.median((image_g*255).astype('uint8'),disk(8))
    
    image_clahe = exposure.equalize_adapthist(image_med, clip_limit=0.03)
    image_clahe_stretch = exposure.rescale_intensity(image_clahe, out_range=(0, 256))

    image_grad = rank2.gradient(image_clahe_stretch,disk(3))
    
    image_grad_mark = image_grad<20
    image_grad_forws = rank2.gradient(image_clahe_stretch,disk(1))
    
    image_grad_mark_closed = closing(image_grad_mark,disk(1))
    
    Labelised = (skimage.measure.label(image_grad_mark_closed,8,0))+1
    Watersheded  = watershed(image_grad_forws,Labelised)
    
    cooc = coocurence_liste(Watersheded,laser,3)
    
    x,y = compte_occurences(cooc)
    
    return x,y
Exemplo n.º 24
0
def segmenter_data_transform(imb, rotate=None, normalize_pctwise=False):
    if isinstance(imb, tuple) and len(imb) == 2:
        imgs,labels = imb
    else:
        imgs = imb
    # rotate image if training
    if rotate is not None:
        for i in xrange(imgs.shape[0]):
            degrees = float(np.random.randint(rotate[0], rotate[1])) if \
                    isinstance(rotate, tuple) else rotate
            imgs[i,0] = scipy.misc.imrotate(imgs[i,0], degrees, interp='bilinear')
            if isinstance(imb, tuple):
                labels[i,0] = scipy.misc.imrotate(labels[i,0], degrees, interp='bilinear')
    # assume they are square
    sz = c.fcn_img_size
    x,y = np.random.randint(0,imgs.shape[2]-sz,2) if imgs.shape[2] > sz else (0,0)
    imgs = nn.utils.floatX(imgs[:,:, x:x+sz, y:y+sz])/255.
    if not normalize_pctwise:
        pad = imgs.shape[2] // 5
        cut = imgs[:,0,pad:-pad,pad:-pad]
        mu = cut.mean(axis=(1,2)).reshape(imgs.shape[0],1,1,1)
        sigma = cut.std(axis=(1,2)).reshape(imgs.shape[0],1,1,1)
        imgs = (imgs - mu) / sigma
        imgs = np.minimum(3, np.maximum(-3, imgs))
    else:
        pclow, pchigh = normalize_pctwise if isinstance(normalize_pctwise, tuple) else (20,70)
        for i in xrange(imgs.shape[0]):
            pl,ph = np.percentile(imgs[i],(pclow, pchigh))
            imgs[i] = exposure.rescale_intensity(imgs[i], in_range=(pl, ph));
            imgs[i] = 2*imgs[i]/imgs[i].max() - 1.
        # or other rescaling here to approximate ~ N(0,1)
    if isinstance(imb, tuple):
        labels = nn.utils.floatX(labels[:,:, x:x+sz, y:y+sz])
        return imgs, labels
    return imgs
Exemplo n.º 25
0
    def rescale_nuclei(self):
        '''Rescale nuclei in the set'''

        if self.number_of_cells() == 0:
            return

        new_values = []

        for cur_cell in self.cells:

            nucleus_values = np.extract(cur_cell.nucleus, cur_cell.pic_nucleus)

            mean_value = np.mean(nucleus_values, dtype = float)

            new_values.append(nucleus_values/mean_value)

            cur_cell.nucleus_mean_value = mean_value

        p2,p98 = np.percentile(np.concatenate(new_values),(2,98))

        for cur_cell in self.cells:

            rescaled_norm_pic = rescale_intensity(cur_cell.pic_nucleus/cur_cell.nucleus_mean_value, in_range=(p2, p98))

            cur_cell.rescaled_nucleus_pic = np.floor(rescaled_norm_pic*200).astype(np.uint8)
Exemplo n.º 26
0
def get_overlay(fifo):
    # get the whole FIFO
    ir_raw = fifo.read()
    # trim to 128 bytes
    ir_trimmed = ir_raw[0:128]
    # go all numpy on it
    ir = np.frombuffer(ir_trimmed, np.uint16)
    # set the array shape to the sensor shape (16x4)
    ir = ir.reshape((16, 4))[::-1, ::-1]
    ir = img_as_float(ir)
    # stretch contrast on our heat map
    p2, p98 = np.percentile(ir, (2, 98))
    ir = exposure.rescale_intensity(ir, in_range=(p2, p98))
    # increase even further? (optional)
    # ir = exposure.equalize_hist(ir)

    # turn our array into pretty colors
    cmap = plt.get_cmap('spectral')
    rgba_img = cmap(ir)
    rgb_img = np.delete(rgba_img, 3, 2)

    # align the IR array with the camera
    tform = transform.AffineTransform(
        scale=SCALE, rotation=ROT, translation=OFFSET)
    ir_aligned = transform.warp(
        rgb_img, tform.inverse, mode='constant', output_shape=im.shape)
    # turn it back into a ubyte so it'll display on the preview overlay
    ir_byte = img_as_ubyte(ir_aligned)
    # return buffer
    return np.getbuffer(ir_byte)
Exemplo n.º 27
0
def findSources(image):
    """Return sources sorted by brightness.
    """

    img1 = image.copy()
    src_mask = makeSourcesMask(img1)
    img1[~src_mask] = img1[src_mask].min()
    img1 = exposure.rescale_intensity(img1)
    img1[~src_mask] = 0.
    img1.set_fill_value(0.)

    def obj_params_with_offset(img, labels, aslice, label_idx):
        y_offset = aslice[0].start
        x_offset = aslice[1].start
        thumb = img[aslice]
        lb = labels[aslice]
        yc, xc = ndimage.center_of_mass(thumb, labels=lb, index=label_idx)
        br = thumb[lb == label_idx].sum() #the intensity of the source
        return [br, xc + x_offset, yc + y_offset]

    srcs_labels, num_srcs = ndimage.label(img1)

    if num_srcs < 10:
        print("WARNING: Only %d sources found." % (num_srcs))

    #Eliminate here all 1 pixel sources
    all_objects = [[ind + 1, aslice] for ind, aslice in enumerate(ndimage.find_objects(srcs_labels))
                                                if srcs_labels[aslice].shape != (1,1)]
    lum = np.array([obj_params_with_offset(img1, srcs_labels, aslice, lab_idx)
                for lab_idx, aslice in all_objects])

    lum = lum[lum[:,0].argsort()[::-1]]  #sort by brightness highest to smallest

    return lum[:,1:]
Exemplo n.º 28
0
 def embed(self, img, payload, k = 6, tv_denoising_weight = 4, rescale = True):
     if len(payload) > self.max_payload:
         raise ValueError("payload too long")
     padded = bytearray(payload) + b"\x00" * (self.max_payload - len(payload))
     encoded = self.rscodec.encode(padded)
     
     if img.ndim == 2:
         output = self._embed(img, encoded, k)
     elif img.ndim == 3:
         output = numpy.zeros(img.shape, dtype=float)
         for i in range(img.shape[2]):
             output[:,:,i] = self._embed(img[:,:,i], encoded, k)
         #y, cb, cr = rgb_to_ycbcr(img)
         #y2 = self._embed(y, encoded, k)
         #cb = self._embed(cb, encoded, k)
         #cr = self._embed(cr, encoded, k)
         #y2 = rescale_intensity(y2, out_range = (numpy.min(y), numpy.max(y)))
         #Cb2 = rescale_intensity(Cb2, out_range = (numpy.min(Cb), numpy.max(Cb)))
         #Cr2 = rescale_intensity(Cr2, out_range = (numpy.min(Cr), numpy.max(Cr)))
         #output = ycbcr_to_rgb(y2, cb, cr)
     else:
         raise TypeError("img must be a 2d or 3d array")
     
     #if tv_denoising_weight > 0:
     #    output = tv_denoise(output, tv_denoising_weight)
     if rescale:
         output = rescale_intensity(output, out_range = (numpy.min(img), numpy.max(img)))
     #return toimage(output,cmin=0,cmax=255)
     return output
Exemplo n.º 29
0
def print_hog_image(image):
    """
    image is expected to be in it's original format

    function prints hog image
    """
    print image.shape
    image = color.rgb2gray(image)

    fd, hog_image = hog(image, orientations=8, pixels_per_cell=(4, 4),
                        cells_per_block=(1, 1), visualise=True, normalise=True)
    print "finished hog..."
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)

    ax1.axis('off')
    ax1.imshow(image, cmap=plt.cm.gray)
    ax1.set_title('Input image')
    ax1.set_adjustable('box-forced')

    # Rescale histogram for better display
    hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))

    ax2.axis('off')
    ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
    ax2.set_title('Histogram of Oriented Gradients')
    ax1.set_adjustable('box-forced')
    plt.show()
Exemplo n.º 30
0
    def warp_rect(self, u_cont):
        pts = u_cont.reshape(4, 2)
        rect = np.zeros((4, 2), dtype="float32")

        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]

        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]

        rect *= self.ratio

        (tl, tr, br, bl) = rect
        width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
        width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
        height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
        height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
        max_w = max(int(width_a), int(width_b))
        max_h = max(int(height_a), int(height_b))

        dst = np.array([
            [0, 0], [max_w - 1, 0], [max_w - 1, max_h - 1], [0, max_h - 1]],
            dtype="float32")

        m = cv2.getPerspectiveTransform(rect, dst)
        warp = cv2.warpPerspective(self.orig, m, (max_w, max_h))
        warp = exposure.rescale_intensity(warp, out_range=(0, 255))
        bop = 15
        light = 15
        return cv2.copyMakeBorder(warp, bop, bop, light, light, cv2.BORDER_CONSTANT, (255, 255, 0))
Exemplo n.º 31
0
images = glob.glob('Al_SiC_1D_0_*[0-4].edf')

light = fabio.open('Al_SiC_1D_0_0005.edf')
bg = light.data
dark = fabio.open('Al_SiC_1D_0_0006.edf')
darkfield = dark.data

base = np.empty([5682, 1780])

I = 0

for i in images:
    edf = fabio.open(str(i))
    img = edf.data
    new = np.divide(img, bg, dtype=np.float32)
    normalised = exposure.rescale_intensity(new, (0.05, 1.7))
    final = normalised[365:1795, 390:2170]
    plt.figure(figsize=(8, 4))
    #    plt.imshow(final)
    #    plt.imsave('Al_SiC_1D_0_000'+str(I)+'.jpg', new)

    x = 0

    while x < final.shape[0]:
        base[x + I, :] = final[x, :]
        x = x + 1

    I = I + 1063

plt.imshow(base)
Exemplo n.º 32
0
from skimage import data
from skimage.exposure import rescale_intensity
import matplotlib.pyplot as plt
import cv2

img = cv2.imread("E:\Kuliah\semes 7\PCD\TUGAS\default.jpg", 0)
cv2.imshow('image', img)
# hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
# cv2.imshow('image',hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()
fig, (ax_each, ax_hsv) = plt.subplots(ncols=2, figsize=(14, 7))

# We use 1 - sobel_each(image) but this won't work if image is not normalized
ax_each.imshow(rescale_intensity(1 - sobel_each(image)))
ax_each.set_xticks([]), ax_each.set_yticks([])
ax_each.set_title("Sobel filter computed\n on individual RGB channels")

# We use 1 - sobel_hsv(image) but this won't work if image is not normalized
ax_hsv.imshow(rescale_intensity(1 - sobel_hsv(image)))
ax_hsv.set_xticks([]), ax_hsv.set_yticks([])
ax_hsv.set_title("Sobel filter computed\n on (V)alue converted image (HSV)")

######################################################################
# Notice that the result for the value-filtered image preserves the color of
# the original image, but channel filtered image combines in a more
# surprising way. In other common cases, smoothing for example, the channel
# filtered image will produce a better result than the value-filtered image.
#
# You can also create your own handler functions for ``adapt_rgb``. To do so,
Exemplo n.º 33
0
def test_rescale_in_range():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 255))
    assert_close(out, [0.2, 0.4, 0.6])
Exemplo n.º 34
0
def test_rescale_stretch():
    image = np.array([51, 102, 153], dtype=np.uint8)
    out = exposure.rescale_intensity(image)
    assert out.dtype == np.uint8
    assert_close(out, [0, 127, 255])
Exemplo n.º 35
0
    hsi_o = np.stack((h, s, i_s), axis=2)
    result = matplotlib.colors.hsv_to_rgb(hsi_o)

    result = result * 255
    result[result > 255] = 255
    result[result < 0] = 0
    return picture


# Load an example image
#imagename=sys.argv[1]
img = cv.imread('problem2_2.bmp')

# Contrast stretching
p2, p98 = np.percentile(img, (2, 98))
img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98))

# Equalization
img_eq = dhe(img)

# Specification
img_specification = hist_specification(img)

# Display results
fig = plt.figure(figsize=(8, 5))
axes = np.zeros((2, 4), dtype=np.object)
axes[0, 0] = fig.add_subplot(2, 4, 1)
for i in range(1, 4):
    axes[0, i] = fig.add_subplot(2,
                                 4,
                                 1 + i,
Exemplo n.º 36
0
def test_rescale_uint14_limits():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint14')
    assert_close(out, [0, uint14_max])
Exemplo n.º 37
0
def test_rescale_named_out_range():
    image = np.array([0, uint16_max], dtype=np.uint16)
    out = exposure.rescale_intensity(image, out_range='uint10')
    assert_close(out, [0, uint10_max])
Exemplo n.º 38
0
def test_rescale_out_range():
    image = np.array([-10, 0, 10], dtype=np.int8)
    out = exposure.rescale_intensity(image, out_range=(0, 127))
    assert out.dtype == np.int8
    assert_close(out, [0, 63, 127])
Exemplo n.º 39
0
def test_rescale_in_range_clip():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image, in_range=(0, 102))
    assert_close(out, [0.5, 1, 1])
Exemplo n.º 40
0
def plot_rgb(arr, rgb=(0, 1, 2),
             ax=None,
             extent=None,
             title="",
             figsize=(10, 10),
             stretch=None,
             str_clip=2):
    """Plot three bands in a numpy array as a composite RGB image.

    Parameters
    ----------
    arr: numpy array
        An n dimension numpy array in rasterio band order (bands, x, y)
    rgb: list
        Indices of the three bands to be plotted (default = 0,1,2)
    extent: tuple
        The extent object that matplotlib expects (left, right, bottom, top)
    title: string (optional)
        String representing the title of the plot
    ax: object
        The axes object where the ax element should be plotted. Default = none
    figsize: tuple (optional)
        The x and y integer dimensions of the output plot if preferred to set.
    stretch: Boolean
        If True a linear stretch will be applied
    str_clip: int (optional)
        The % of clip to apply to the stretch. Default = 2 (2 and 98)

    Returns
    ----------
    fig, ax : figure object, axes object
        The figure and axes object associated with the 3 band image. If the
        ax keyword is specified,
        the figure return will be None.
    """

    if len(arr.shape) != 3:
        raise Exception("""Input needs to be 3 dimensions and in rasterio
                           order with bands first""")

    # Index bands for plotting and clean up data for matplotlib
    rgb_bands = arr[rgb]

    if stretch:
        s_min = str_clip
        s_max = 100 - str_clip
        arr_rescaled = np.zeros_like(rgb_bands)
        for ii, band in enumerate(rgb_bands):
            lower, upper = np.percentile(band, (s_min, s_max))
            arr_rescaled[ii] = exposure.rescale_intensity(band,
                                                          in_range=(lower, upper))
        rgb_bands = arr_rescaled.copy()

    # If type is masked array - add alpha channel for plotting
    if ma.is_masked(rgb_bands):
        # Build alpha channel
        mask = ~(np.ma.getmask(rgb_bands[0])) * 255

        # Add the mask to the array & swap the axes order from (bands,
        # rows, columns) to (rows, columns, bands) for plotting
        rgb_bands = np.vstack((bytescale(rgb_bands),
                               np.expand_dims(mask, axis=0))).\
            transpose([1, 2, 0])
    else:
        # Index bands for plotting and clean up data for matplotlib
        rgb_bands = bytescale(rgb_bands).transpose([1, 2, 0])

    # Then plot. Define ax if it's default to none
    if ax is None:
        fig, ax = plt.subplots(figsize=figsize)
    else:
        fig = None
    ax.imshow(rgb_bands, extent=extent)
    ax.set_title(title)
    ax.set(xticks=[], yticks=[])
    return fig, ax
Exemplo n.º 41
0
    im = np.array([-128, -1], dtype=np.int8)
    frequencies, bin_centers = exposure.histogram(im)
    assert_array_equal(bin_centers, np.arange(-128, 0))
    assert frequencies[0] == 1
    assert frequencies[-1] == 1
    assert_array_equal(frequencies[1:-1], 0)


# Test histogram equalization
# ===========================

np.random.seed(0)

# squeeze image intensities to lower image contrast
test_img = skimage.img_as_float(data.camera())
test_img = exposure.rescale_intensity(test_img / 5. + 100)


def test_equalize_ubyte():
    img = skimage.img_as_ubyte(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
    check_cdf_slope(cdf)


def test_equalize_float():
    img = skimage.img_as_float(test_img)
    img_eq = exposure.equalize_hist(img)

    cdf, bin_edges = exposure.cumulative_distribution(img_eq)
Exemplo n.º 42
0
def test_rescale_shrink():
    image = np.array([51., 102., 153.])
    out = exposure.rescale_intensity(image)
    assert_close(out, [0, 0.5, 1])
Exemplo n.º 43
0
    result = rmlp(bl, T=1 / 255., r=4, K=11)

    # calculate measures if ground truth exists
    if gt is not None:
        for i, bb in enumerate(bl):
            v_mse = np.linalg.norm(bb - gt)
            v_ssim = ssim(bb, gt, data_range=(bb.max() - bb.min()))
            logger.info("blurred {}".format(i))
            logger.info(".. MSE = {:.4f}, SSIM = {:.4f}".format(v_mse, v_ssim))
        v_mse = np.linalg.norm(result - gt)
        v_ssim = ssim(result, gt, data_range=(result.max() - result.min()))
        logger.info("result")
        logger.info(".. MSE = {:.4f}, SSIM = {:.4f}".format(v_mse, v_ssim))
    else:
        logger.info("no ground truth for quality evaluation")

    return result


if __name__ == '__main__':
    root = "data/mt"
    try:
        result = demo(root)

        # convert to uint8 for preview
        result = rescale_intensity(result, out_range=(0, 2**8 - 1))
        result = result.astype(np.uint8)
        imageio.imwrite(os.path.join(root, "result.png"), result)
    except Exception as e:
        logger.error(traceback.format_exc())
Exemplo n.º 44
0
from skimage import exposure

color_image = data.hubble_deep_field()

# for illustration purposes, we work on a crop of the image.
x_0 = 70
y_0 = 354
width = 100
height = 100

img = color.rgb2grey(color_image)[y_0:(y_0 + height), x_0:(x_0 + width)]

# the rescaling is done only for visualization purpose.
# the algorithms would work identically in an unscaled version of the
# image. However, the parameter h needs to be adapted to the scale.
img = exposure.rescale_intensity(img)

##############################################################
# MAXIMA DETECTION

# Maxima in the galaxy image are detected by mathematical morphology.
# There is no a priori constraint on the density.

# We find all local maxima
local_maxima = extrema.local_maxima(img)
label_maxima = label(local_maxima)
overlay = color.label2rgb(label_maxima,
                          img,
                          alpha=0.7,
                          bg_label=0,
                          bg_color=None,
Exemplo n.º 45
0
def scale_intensity(data, out_min=0, out_max=255):
    """Scale intensity of data in a range defined by [out_min, out_max], based on the 2nd and 98th percentiles."""
    p2, p98 = np.percentile(data, (2, 98))
    return rescale_intensity(data,
                             in_range=(p2, p98),
                             out_range=(out_min, out_max))
Exemplo n.º 46
0
import matplotlib.pyplot as plt

from skimage.feature import hog
from skimage import data, color, exposure

image = color.rgb2gray(data.astronaut())

fd, hog_image = hog(image,
                    orientations=8,
                    pixels_per_cell=(16, 16),
                    cells_per_block=(1, 1),
                    visualise=True)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))

print hog_image

ax1.axis('off')
ax1.imshow(image, cmap=plt.cm.gray)
ax1.set_title('Input image')

# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))

ax2.axis('off')
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
ax2.set_title('Histogram of Oriented Gradients')
plt.show()
Exemplo n.º 47
0
                             plot_matches)
from skimage.transform import warp, AffineTransform
from skimage.exposure import rescale_intensity
from skimage.color import rgb2gray
from skimage.measure import ransac

# generate synthetic checkerboard image and add gradient for the later matching
checkerboard = img_as_float(data.checkerboard())
img_orig = np.zeros(list(checkerboard.shape) + [3])  # depth of 3
img_orig[..., 0] = checkerboard  # first layer is checkboard
# create a gradient lighting on the image
gradient_r, gradient_c = (np.mgrid[0:img_orig.shape[0], 0:img_orig.shape[1]] /
                          float(img_orig.shape[0]))
img_orig[..., 1] = gradient_r
img_orig[..., 2] = gradient_c
img_orig = rescale_intensity(img_orig)
img_orig_gray = rgb2gray(img_orig)

# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9), rotation=0.2, translation=(20, -10))
img_warped = warp(img_orig, tform.inverse, output_shape=(200, 200))
img_warped_gray = rgb2gray(img_warped)

# extract corners using Harris' corner measure
coords_orig = corner_peaks(corner_harris(img_orig_gray),
                           threshold_rel=0.001,
                           min_distance=5)
coords_warped = corner_peaks(corner_harris(img_warped_gray),
                             threshold_rel=0.001,
                             min_distance=5)
Exemplo n.º 48
0
			bbox = plate['bbox']
			reg = plate['reg']
			
			xran = (bbox[0], bbox[0]+bbox[2])
			yran = (bbox[1], bbox[1]+bbox[3])

			print count, actualFina, xran, yran
			bbox, bestInd, bestAngle = deskew.Deskew(im, (xran, yran))
			rotIm = deskew.RotateAndCrop(im, (xran, yran), bestAngle)

			#misc.imsave("rotIm{0}.png".format(count), rotIm)			

			imScore = RgbToPlateBackgroundScore(rotIm)

			#normContrast = exposure.equalize_hist(imScore)
			normContrast = exposure.rescale_intensity(imScore)
			#normContrast = exposure.equalize_adapthist(imScore)

			thresh = 0.6 * (normContrast.min() + normContrast.max())
			#normContrast = (normContrast > 0.5)
			#print normContrast.min(), normContrast.max()

			misc.imsave("{0}.png".format(outRootFina), normContrast)
			pickle.dump((bbox, bestAngle), open("{0}.deskew".format(outRootFina), "wb"), protocol=-1)

			if 0:
				import matplotlib.pyplot as plt
				dat = normContrast.reshape((normContrast.size,))

				plt.subplot(3,1,1)
				ims = plt.imshow(normContrast)
Exemplo n.º 49
0
def plot_visualization(vid,
                       vid_orig,
                       vis_dir,
                       plot_img=False,
                       write_video=True):
    def crop_center(img, cropx, cropy):
        y, x, _ = img.shape
        startx = x // 2 - (cropx // 2)
        starty = y // 2 - (cropy // 2)
        return img[starty:starty + cropy, startx:startx + cropx, :]

    def plot_img_and_hist(image, axes, bins=256):
        #Plot an image along with its histogram and cumulative histogram.
        image = img_as_float(image)
        ax_img, ax_hist = axes
        ax_cdf = ax_hist.twinx()

        # Display image
        ax_img.imshow(image, cmap=plt.cm.gray)
        ax_img.set_axis_off()
        ax_img.set_adjustable('box-forced')

        # Display histogram
        ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black')
        ax_hist.ticklabel_format(axis='y',
                                 style='scientific',
                                 scilimits=(0, 0))
        ax_hist.set_xlabel('Pixel intensity')
        ax_hist.set_xlim(0, 1)
        ax_hist.set_yticks([])

        # Display cumulative distribution
        img_cdf, bins = exposure.cumulative_distribution(image, bins)
        ax_cdf.plot(bins, img_cdf, 'r')
        ax_cdf.set_yticks([])

        return ax_img, ax_hist, ax_cdf

    def PCA(data):
        m, n = data.shape[0], data.shape[1]
        #print(m, n)
        mean = np.mean(data, axis=0)
        data -= np.tile(mean, (m, 1))
        # calculate the covariance matrix
        cov = np.matmul(np.transpose(data), data)
        evals, evecs = np.linalg.eigh(cov)
        # sort eigenvalue in decreasing order
        idx = np.argsort(evals)[::-1]
        evecs = evecs[:, idx]
        evals = evals[idx]
        #print(evals)
        evecs = evecs[:, 0]
        return np.matmul(data, evecs), evals[0] / sum(evals)

    width, height = 112, 112

    video_histeq = []
    for i in range(vid.shape[0]):
        frame = crop_center(vid[i], 112, 112)
        frame = np.reshape(frame, (112 * 112, 3))
        frame, K = PCA(frame)
        frame = np.reshape(frame, (112, 112))
        max, min = np.max(frame), np.min(frame)
        frame = ((frame - min) / (max - min) * 255).astype('uint8')
        # Contrast stretching
        p2, p98 = np.percentile(frame, (2, 98))
        img_rescale = exposure.rescale_intensity(frame, in_range=(p2, p98))
        # Equalization
        img_eq = exposure.equalize_hist(frame)
        video_histeq.append(img_eq)

        # # Adaptive Equalization
        # img_adapteq = exposure.equalize_adapthist(frame, clip_limit=0.03)

        if plot_img:
            # Display results
            fig = plt.figure(figsize=(12, 16))
            axes = np.zeros((4, 3), dtype=np.object)
            axes[0, 0] = fig.add_subplot(4, 3, 1)
            for j in range(1, 3):
                axes[0, j] = fig.add_subplot(4,
                                             3,
                                             1 + j,
                                             sharex=axes[0, 0],
                                             sharey=axes[0, 0])
            for j in range(3, 12):
                axes[j // 3, j % 3] = fig.add_subplot(4, 3, 1 + j)

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(frame, axes[0:2, 0])
            ax_img.set_title('PCA on 3 channels ({:.4f})'.format(K))

            y_min, y_max = ax_hist.get_ylim()
            ax_hist.set_ylabel('Number of pixels')
            ax_hist.set_yticks(np.linspace(0, y_max, 5))

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(
                img_rescale, axes[0:2, 1])
            ax_img.set_title('Contrast stretching')

            ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[0:2, 2])
            ax_img.set_title('Histogram equalization')

            #ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_adapteq, axes[0:1, 3])
            #ax_img.set_title('Adaptive equalization')

            ax_cdf.set_ylabel('Fraction of total intensity')
            ax_cdf.set_yticks(np.linspace(0, 1, 5))

            print(vid_orig[j].shape)
            frame_downsample_crop = crop_center(vid_orig[j], 112, 112)
            frame = crop_center(vid[j], 112, 112)
            axes[2, 0].imshow(frame_downsample_crop.astype('uint8'))
            axes[2, 0].set_title('Dowmsampled')
            frame_scaled_joint = linear_scaling(
                frame, vid, video_linear_scaling=True,
                joint_channels=True).astype('uint8')
            axes[2, 1].imshow(frame_scaled_joint.astype('uint8'))
            axes[2, 1].set_title('Joint Scaling')
            frame_scaled_separate = linear_scaling(
                frame, vid, video_linear_scaling=True,
                joint_channels=False).astype('uint8')
            axes[2, 2].imshow(frame_scaled_separate.astype('uint8'))
            axes[2, 2].set_title('Separate Scaling')
            for j in range(frame.shape[2]):
                axes[3, j].imshow(frame[:, :, j], cmap=plt.get_cmap('jet'))
                axes[3, j].set_title('Channel{}'.format(j))
            # prevent overlap of y-axis labels
            fig.tight_layout()
            plt.savefig('{}/vis_{}.png'.format(vis_dir, i))
            plt.close()

    if write_video:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')  # Be sure to use lower case
        output = "{}/hist_eq.avi".format(vis_dir)
        out = cv2.VideoWriter(output, fourcc, 10.0, (width, height), False)
        vid = np.multiply(np.asarray(video_histeq), 255).astype('uint8')
        print(vid.shape)
        print(output)
        for i in range(vid.shape[0]):
            frame = vid[i]
            #frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            #frame = frame.reshape(112, 112, 3)
            # print(frame)
            out.write(frame)
        out.release()
        cv2.destroyAllWindows()
def contrastStretching(image):
    # Contrast stretching
    p2, p98 = np.percentile(image, (25, 90))
    img_rescale = exposure.rescale_intensity(image, in_range=(p2, p98))
    return img_rescale
Exemplo n.º 51
0
ax[2].imshow(p8 >= t_loc_otsu, cmap=plt.cm.gray)
ax[2].set_title('Original >= local Otsu' % t_glob_otsu)

ax[3].imshow(glob_otsu, cmap=plt.cm.gray)
ax[3].set_title('Global Otsu ($t=%d$)' % t_glob_otsu)

for a in ax:
    a.axis('off')

plt.tight_layout()

######################################################################
# The example below performs the same comparison, using a 3D image this time.

brain = exposure.rescale_intensity(data.brain().astype(float))

radius = 5
neighborhood = ball(radius)

# t_loc_otsu is an image
t_loc_otsu = rank.otsu(brain, neighborhood)
loc_otsu = brain >= t_loc_otsu

# t_glob_otsu is a scalar
t_glob_otsu = threshold_otsu(brain)
glob_otsu = brain >= t_glob_otsu

fig, axes = plt.subplots(nrows=2,
                         ncols=2,
                         figsize=(12, 12),
Exemplo n.º 52
0
    if len(img.shape) == 3:
        plt.imshow(img, cmap='gray')
    else: # len(img.shape) == 2
        plt.imshow(gray2rgb(img), cmap='gray')
    plt.title(title)
    # Histograma
    plt.subplot(num_plot + 2)
    plt.hist(img_as_float(img).ravel(), bins=bins)
    plt.xlim(0, 1)
    
def file_read():
    file_path = filedialog.askopenfilename()
    return file_path


try:
    # Busco imagen y obtengo su ruta
    root = tk.Tk()
    root.withdraw() 
    img = imread(file_read())
    out_range = (0, 50)
    img_shrink = rescale_intensity(img, out_range=out_range).astype(np.uint8)
    plot_img_hist(img, 221, 'Imagen original')
    plot_img_hist(img_shrink, 222, 'Imagen shrinking', bins=out_range[1]-out_range[0])
    
    plt.show()
except:
    print('Cerraste la ventana!')

print('👋🏽')
root.destroy()
Exemplo n.º 53
0
######################################################################
# We can use these functions as we would normally use them, but now they work
# with both gray-scale and color images. Let's plot the results with a color
# image:

from skimage import data
from skimage.exposure import rescale_intensity
import matplotlib.pyplot as plt

image = data.astronaut()  # 导入宇航员数据

fig, (ax_each, ax_hsv) = plt.subplots(ncols=2, figsize=(14, 7))  # 申明PLOT

# We use 1 - sobel_each(image) but this won't work if image is not normalized
ax_each.imshow(rescale_intensity(
    1 - sobel_each(image)))  # sobel运算,并把结果归一化后分布到0-255  SOBEL计算3次
ax_each.set_xticks([]), ax_each.set_yticks([])
ax_each.set_title("Sobel filter computed\n on individual RGB channels")

# We use 1 - sobel_hsv(image) but this won't work if image is not normalized
ax_hsv.imshow(rescale_intensity(1 - sobel_hsv(image)))  # 只计算V
ax_hsv.set_xticks([]), ax_hsv.set_yticks([])
ax_hsv.set_title("Sobel filter computed\n on (V)alue converted image (HSV)")

######################################################################
# Notice that the result for the value-filtered image preserves the color of
# the original image, but channel filtered image combines in a more
# surprising way. In other common cases, smoothing for example, the channel
# filtered image will produce a better result than the value-filtered image.
#
# You can also create your own handler functions for ``adapt_rgb``. To do so,
Exemplo n.º 54
0
def pad_img_and_add_interp_down_channel(array, downsample_axis = 'x', downsample_ratio = [1,2], shape=[128,128]):
    '''
    This function takes in an image and outputs a three channel image, where the first channel
    is the fully-sampled image, the second sample is a downsampled version of this image, and
    the third channel contains 
    '''
    if len(array.shape) != 0:
        if len(shape)>2:
            shape = shape[0:2]
        array = exposure.rescale_intensity(array, in_range='image', out_range=(0.0,1.0))
        mask = np.ones(array.shape)
        #print(full_image.shape)
        if downsample_ratio[0] == 0:
            downsample_ratio[0] = 1
        elif downsample_ratio[1] == 0:
            downsample_ratio[1] = 1    
            
        if downsample_axis == 'x':
            latent_image = np.zeros((array.shape[0], 
                                     int(np.ceil(array.shape[1]/downsample_ratio[1]))))   
            downsample_ratio = downsample_ratio[1]
            j_count = 0
            for j in range(array.shape[1]):
                if j%downsample_ratio==0:
                    latent_image[:, j_count] = array[:, j]
                    j_count += 1
                else:
                    mask[:,j] = 0
        elif downsample_axis == 'y':
            latent_image = np.zeros((int(np.ceil(array.shape[0]/downsample_ratio[0])), 
                                     array.shape[1])) 
            downsample_ratio = downsample_ratio[0]
            i_count = 0
            for i in range(array.shape[0]):
                if i%downsample_ratio==0:
                    latent_image[i_count, :] = array[i, :]
                    i_count += 1
                else:
                    mask[i,:] = 0  
        elif downsample_axis == 'both':
            latent_image = np.zeros((int(np.ceil(array.shape[0]/downsample_ratio[0])), 
                                     int(np.ceil(array.shape[1]/downsample_ratio[1]))))
            mask = np.zeros(array.shape)
            i_count = 0
            for i in range(0, array.shape[0], downsample_ratio[0]):
                j_count = 0
                for j in range(0, array.shape[1], downsample_ratio[1]):
                    latent_image[i_count, j_count] = array[i, j]
                    mask[i,j] = 1
                    if j%downsample_ratio[1]==0:
                        j_count += 1
                if i%downsample_ratio[0]==0:
                    i_count += 1
        down_image = skimage.transform.resize(latent_image, output_shape=array.shape, 
                                              order=3, mode='reflect', cval=0, clip=True, preserve_range=True, 
                                              anti_aliasing=True, anti_aliasing_sigma=None)
        full_i_shape = array.shape[0]
        full_j_shape = array.shape[1]
        if full_i_shape%shape[0] != 0:
            i_left = full_i_shape%shape[0]
            i_pad = (shape[0] - i_left)//2
            rest_i = (shape[0] - i_left)%2
        else:
            i_left = 0
            i_pad = 0
            rest_i = 0
        if full_j_shape%shape[1] != 0:
            j_left = full_j_shape%shape[1]
            j_pad = (shape[1] - j_left)//2
            rest_j = (shape[1] - j_left)%2
        else:
            j_left = 0
            j_pad = 0
            rest_j = 0

        #print('i_left = '+str(i_left))
        #print('j_left = '+str(j_left))
        #print('i_pad = '+str(i_pad))
        #print('j_pad = '+str(j_pad))
        #print('rest_i = '+str(rest_i))
        #print('rest_j = '+str(rest_j))
        full_image = np.zeros((full_i_shape, full_j_shape, 3), dtype = np.float32)
        full_image[...,0] = array # Target Array
        full_image[...,1] = down_image # Downsampled Array
        full_image[...,2] = mask # Mask Array - for display
        pad_image = np.pad(full_image, [(i_pad, ), (j_pad, ), (0,)], mode='constant', constant_values = 0)
        padded_multi_chan_image = np.pad(pad_image, [(0, rest_i), (0, rest_j), (0, 0)], mode='constant', constant_values = 0)
    else:
        padded_multi_chan_image = np.array(0)
    return padded_multi_chan_image
def intensity(image_array: ndarray):
    v_min, v_max = np.percentile(image_array, (0.2, 99.8))
    better_contrast = exposure.rescale_intensity(image_array, in_range=(v_min, v_max))
    return better_contrast
Exemplo n.º 56
0
    board = np.zeros((9, 9), dtype="int")
    stepX = warped.shape[1] // 9
    stepY = warped.shape[0] // 9
    cellLocs = []

    for y in range(0, 9):
        row = []
        for x in range(0, 9):
            startX = x * stepX
            startY = y * stepY
            endX = (x + 1) * stepX
            endY = (y + 1) * stepY
            row.append((startX, startY, endX, endY))
            cell = warped[startY:endY, startX:endX]
            cell = exposure.rescale_intensity(cell, out_range=(0, 255))
            cell = cell.astype("uint8")
            thresh = cv2.threshold(cell, 0, 255,
                                   cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            thresh = clear_border(thresh)
            digit = extract_digit(thresh, ticked)
            if digit != ".":
                roi = cv2.resize(digit, (28, 28))
                roi = roi.astype("float") / 255.0
                roi = img_to_array(roi)
                roi = np.expand_dims(roi, axis=0)
                pred = model.predict(roi).argmax(axis=1)[0]
                #print(pred)
                board[y, x] = pred
        cellLocs.append(row)
Exemplo n.º 57
0
def equalize_image(image):
    image = exposure.rescale_intensity(image, in_range=(0, 255))
    return exposure.equalize_adapthist(image)
Exemplo n.º 58
0
def plot_visualization_frame(eval_vis_dir, frame, name):
    def crop_center(img, cropx, cropy):
        y, x, _ = img.shape
        startx = x // 2 - (cropx // 2)
        starty = y // 2 - (cropy // 2)
        return img[starty:starty + cropy, startx:startx + cropx, :]

    def plot_img_and_hist(image, axes, bins=256):
        #Plot an image along with its histogram and cumulative histogram.
        image = img_as_float(image)
        ax_img, ax_hist = axes
        ax_cdf = ax_hist.twinx()

        # Display image
        ax_img.imshow(image, cmap=plt.cm.gray)
        ax_img.set_axis_off()
        ax_img.set_adjustable('box-forced')

        # Display histogram
        ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black')
        ax_hist.ticklabel_format(axis='y',
                                 style='scientific',
                                 scilimits=(0, 0))
        ax_hist.set_xlabel('Pixel intensity')
        ax_hist.set_xlim(0, 1)
        ax_hist.set_yticks([])

        # Display cumulative distribution
        img_cdf, bins = exposure.cumulative_distribution(image, bins)
        ax_cdf.plot(bins, img_cdf, 'r')
        ax_cdf.set_yticks([])

        return ax_img, ax_hist, ax_cdf

    frame = crop_center(frame, 112, 112)
    frame = frame[:, :, 0]
    max, min = np.max(frame), np.min(frame)
    frame = ((frame - min) / (max - min) * 255).astype('uint8')
    # Contrast stretching
    p2, p98 = np.percentile(frame, (2, 98))
    img_rescale = exposure.rescale_intensity(frame, in_range=(p2, p98))
    # Equalization
    img_eq = exposure.equalize_hist(frame)

    # Display results
    fig = plt.figure(figsize=(12, 8))
    axes = np.zeros((2, 3), dtype=np.object)
    axes[0, 0] = fig.add_subplot(2, 3, 1)
    for i in range(1, 3):
        axes[0, i] = fig.add_subplot(2,
                                     3,
                                     1 + i,
                                     sharex=axes[0, 0],
                                     sharey=axes[0, 0])
    for i in range(3, 6):
        axes[i // 3, i % 3] = fig.add_subplot(2, 3, 1 + i)

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(frame, axes[0:2, 0])
    ax_img.set_title('Feature map')

    y_min, y_max = ax_hist.get_ylim()
    ax_hist.set_ylabel('Number of pixels')
    ax_hist.set_yticks(np.linspace(0, y_max, 5))

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[0:2, 1])
    ax_img.set_title('Contrast stretching')

    ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[0:2, 2])
    ax_img.set_title('Histogram equalization')

    ax_cdf.set_ylabel('Fraction of total intensity')
    ax_cdf.set_yticks(np.linspace(0, 1, 5))

    fig.tight_layout()

    plt.savefig(os.path.join(eval_vis_dir, '{}.png'.format(name)))
    plt.close()
Exemplo n.º 59
0
def equalize_adapthist(image,
                       ntiles_x=8,
                       ntiles_y=8,
                       clip_limit=0.01,
                       nbins=256):
    """Contrast Limited Adaptive Histogram Equalization.

    Parameters
    ----------
    image : array-like
        Input image.
    ntiles_x : int, optional
        Number of tile regions in the X direction.  Ranges between 2 and 16.
    ntiles_y : int, optional
        Number of tile regions in the Y direction.  Ranges between 2 and 16.
    clip_limit : float: optional
        Clipping limit, normalized between 0 and 1 (higher values give more
        contrast).
    nbins : int, optional
        Number of gray bins for histogram ("dynamic range").

    Returns
    -------
    out : ndarray
        Equalized image.

    Notes
    -----
    * The algorithm relies on an image whose rows and columns are even
      multiples of the number of tiles, so the extra rows and columns are left
      at their original values, thus  preserving the input image shape.
    * For color images, the following steps are performed:
       - The image is converted to LAB color space
       - The CLAHE algorithm is run on the L channel
       - The image is converted back to RGB space and returned
    * For RGBA images, the original alpha channel is removed.

    References
    ----------
    .. [1] http://tog.acm.org/resources/GraphicsGems/gems.html#gemsvi
    .. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE
    """
    args = [None, ntiles_x, ntiles_y, clip_limit * nbins, nbins]
    if image.ndim > 2:
        lab_img = color.rgb2lab(skimage.img_as_float(image))
        l_chan = lab_img[:, :, 0]
        l_chan /= np.max(np.abs(l_chan))
        l_chan = skimage.img_as_uint(l_chan)
        args[0] = rescale_intensity(l_chan, out_range=(0, NR_OF_GREY - 1))
        new_l = _clahe(*args).astype(float)
        new_l = rescale_intensity(new_l, out_range=(0, 100))
        lab_img[:new_l.shape[0], :new_l.shape[1], 0] = new_l
        image = color.lab2rgb(lab_img)
        image = rescale_intensity(image, out_range=(0, 1))
    else:
        image = skimage.img_as_uint(image)
        args[0] = rescale_intensity(image, out_range=(0, NR_OF_GREY - 1))
        out = _clahe(*args)
        image[:out.shape[0], :out.shape[1]] = out
        image = rescale_intensity(image)
    return image
Exemplo n.º 60
0
def pad_img_and_add_down_channel(array, downsample_axis = 'x', downsample_ratio = [1,2], shape=[128,128], gauss_blur_std = None):
    '''
    This function takes in an image and outputs a three channel image, where the first channel
    is the fully-sampled image, the second sample is a downsampled version of this image, and
    the third channel contains the downsampling binary mask
    '''
    if len(array.shape) != 0:
        if len(shape)>2:
            shape = shape[0:2]
        array = exposure.rescale_intensity(array, in_range='image', out_range=(0.0,1.0))
        down_image = np.array(array, dtype = np.float32)
        mask = np.ones(array.shape)
        #print(full_image.shape)
        if downsample_ratio[0] == 0:
            downsample_ratio[0] = 1
        if downsample_ratio[1] == 0:
            downsample_ratio[1] = 1
        if downsample_axis == 'x':
            downsample_ratio = downsample_ratio[1]
            for j in range(array.shape[1]):
                if j%downsample_ratio!=0:
                    mask[:, j] = 0
        elif downsample_axis == 'y':
            downsample_ratio = downsample_ratio[0]
            for i in range(array.shape[0]):
                if i%downsampling_ratio[1]!=0:
                    mask[i, :] = 0
        elif downsample_axis == 'both':
            downsample_ratio_j = downsample_ratio[1]
            downsample_ratio_i = downsample_ratio[0]
            if downsample_ratio_j > 0:
                for j in range(array.shape[1]):
                    if j%downsample_ratio[1]!=0:
                        mask[:, j] = 0
            if downsample_ratio_i > 0:
                for i in range(array.shape[0]):
                    if i%downsample_ratio[0]!=0:
                        mask[i, :] = 0
        down_image = np.multiply(mask, down_image)
        full_i_shape = array.shape[0]
        full_j_shape = array.shape[1]
        if full_i_shape%shape[0] != 0:
            i_left = full_i_shape%shape[0]
            i_pad = (shape[0] - i_left)//2
            rest_i = (shape[0] - i_left)%2
        else:
            i_left = 0
            i_pad = 0
            rest_i = 0
        if full_j_shape%shape[1] != 0:
            j_left = full_j_shape%shape[1]
            j_pad = (shape[1] - j_left)//2
            rest_j = (shape[1] - j_left)%2
        else:
            j_left = 0
            j_pad = 0
            rest_j = 0
        #print('i_left = '+str(i_left))
        #print('j_left = '+str(j_left))
        #print('i_pad = '+str(i_pad))
        #print('j_pad = '+str(j_pad))
        #print('rest_i = '+str(rest_i))
        #print('rest_j = '+str(rest_j))
        if gauss_blur_std is not None:
            down_image = scipy.ndimage.gaussian_filter(down_image, sigma=gauss_blur_std, order=0, 
                                                       output=None, mode='reflect', cval=0.0, truncate=6.0)
        full_image = np.zeros((full_i_shape, full_j_shape, 3), dtype = np.float32)
        full_image[...,0] = array # Target Array
        full_image[...,1] = down_image # Downsampled Array
        full_image[...,2] = mask # Mask Array - for display
        pad_image = np.pad(full_image, [(i_pad, ), (j_pad, ), (0,)], mode='constant', constant_values = 0)
        padded_multi_chan_image = np.pad(pad_image, [(0, rest_i), (0, rest_j), (0, 0)], mode='constant', constant_values = 0)
    else:
        padded_multi_chan_image = np.array(0)
    return padded_multi_chan_image