Exemplo n.º 1
0
def align(image, reference, mask=None, fill_value=0.0, fast=True):
    """
    Align a diffraction image to a reference. Subpixel resolution available.

    Parameters
    ----------
    image : `~numpy.ndarray`, shape (M,N)
        Image to be aligned.
    reference : `~numpy.ndarray`, shape (M,N)
        `image` will be align onto the `reference` image.
    mask : `~numpy.ndarray` or None, optional
        Mask that evaluates to True on valid pixels of the array `image`.
    fill_value : float, optional
        Edges will be filled with `fill_value` after alignment.
    fast : bool, optional
        If True (default), alignment is done on images cropped to half
        (one quarter area). Disable for small images, e.g. 256x256.
    
    Returns
    -------
    aligned : `~numpy.ndarray`, shape (M,N)
        Aligned image.
    
    See Also
    --------
    ialign : generator of aligned images
    """
    if mask is None:
        mask = np.ones_like(image, dtype=np.bool)

    shift = masked_register_translation(src_image=image,
                                        target_image=reference,
                                        src_mask=mask)
    return shift_image(image, -1 * shift, fill_value=fill_value)
Exemplo n.º 2
0
def estimate_velocity(first_image, second_image, dt):
    """Find the relative shift between the two tiles."""
    # Use structural similarity index as a weight for frame transaltion computation.
    sim, diff = structural_similarity(first_image, second_image, full=True)
    if sim == 1:
        print(sim)
    mask = np.ones_like(first_image).astype(bool)
    delta = feature.masked_register_translation(second_image,
                                                first_image,
                                                mask,
                                                overlap_ratio=3 / 10)
    # Reorient to translate matrix motion to 2D image.
    delta[0] = delta[0] * -1
    return delta / dt, sim
Exemplo n.º 3
0
def register_imgset(imgset, mask):
    """
    Register the input tensor imgset of shape (H, W, T) with respect to the image with the best quality map
    
    Parameters
    ----------
    imgset: numpy array
        imgset to register
    masks: numpy array
        tensor with the quality maps of the imgset
    """
    ref = imgset[...,np.argmax(np.mean(mask,axis=(0,1)))] #best image
    imgset_reg = np.empty(imgset.shape)
    mask_reg = np.empty(mask.shape)
    
    for i in range(imgset.shape[-1]):
        x = imgset[...,i]; m = mask[...,i]
        s = masked_register_translation(ref, x, m)
        x = shift(x, s, mode='reflect')
        m = shift(m, s, mode='constant', cval=0)
        imgset_reg[...,i] = x
        mask_reg[...,i] = m
        
    return imgset,mask_reg
Exemplo n.º 4
0
# However, the masked_register_translation function requires
# too much memory, and so readthedocs would kill the documentation
# build. Therefore, we render the image locally instead.

import matplotlib.pyplot as plt
import numpy as np
from skimage.feature import masked_register_translation
from skued import shift_image, diffread

ref = diffread("Cr_1.tif")
im = diffread("Cr_2.tif")

mask = np.ones_like(ref, dtype=np.bool)
mask[0:1250, 950:1250] = False

shift = masked_register_translation(im, ref, mask)
shifted = shift_image(im, -1 * shift)

fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows=2,
                                                       ncols=3,
                                                       figsize=(9, 6))
ax1.imshow(ref, vmin=0, vmax=200)
ax2.imshow(im, vmin=0, vmax=200)
ax3.imshow(ref - im, cmap="RdBu_r", vmin=-100, vmax=100)
ax4.imshow(mask, vmin=0, vmax=1, cmap="binary")
ax5.imshow(shifted, vmin=0, vmax=200)
ax6.imshow(ref - shifted, cmap="RdBu_r", vmin=-100, vmax=100)

for ax in (ax1, ax2, ax3, ax4, ax5, ax6):
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
Exemplo n.º 5
0
def register_frame(frame, mask, reference):

    detected_shift = masked_register_translation(reference, frame, mask)
    shifted_frame = ndi.shift(frame, detected_shift, mode='reflect')
    shifted_mask = ndi.shift(mask, detected_shift, mode='constant', cval=0)
    return shifted_frame, shifted_mask
# See reference paper for more examples
corrupted_pixels = np.random.choice([False, True],
                                    size=image.shape,
                                    p=[0.25, 0.75])

# The shift corresponds to the pixel offset relative to the reference image
offset_image = ndi.shift(image, shift)
offset_image *= corrupted_pixels
print("Known offset (y, x): {}".format(shift))

# Determine what the mask is based on which pixels are invalid
# In this case, we know what the mask should be since we corrupted
# the pixels ourselves
mask = corrupted_pixels

shift = masked_register_translation(image, offset_image, mask)

print("Detected pixel offset (y, x): {}".format(shift))

fig = plt.figure(figsize=(8, 3))
ax1 = plt.subplot(1, 3, 1)
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1)
ax3 = plt.subplot(1, 3, 3, sharex=ax1, sharey=ax1)

ax1.imshow(image, cmap='gray')
ax1.set_axis_off()
ax1.set_title('Reference image')

ax2.imshow(offset_image.real, cmap='gray')
ax2.set_axis_off()
ax2.set_title('Corrupted, offset image')
corrupted_pixels = np.random.choice([False, True], 
                                    size = image.shape, 
                                    p = [0.25, 0.75])

# The shift corresponds to the pixel offset relative to the reference image
offset_image = ndi.shift(image, shift)
offset_image *= corrupted_pixels
print("Known offset (row, col): {}".format(shift))

# Determine what the mask is based on which pixels are invalid
# In this case, we know what the mask should be since we corrupted 
# the pixels ourselves
mask = corrupted_pixels

detected_shift = masked_register_translation(image, offset_image, mask)

print("Detected pixel offset (row, col): {}".format(-detected_shift))

fig = plt.figure(figsize=(8, 3))
ax1 = plt.subplot(1, 3, 1)
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1)
ax3 = plt.subplot(1, 3, 3, sharex=ax1, sharey=ax1)

ax1.imshow(image, cmap='gray')
ax1.set_axis_off()
ax1.set_title('Reference image')

ax2.imshow(offset_image.real, cmap='gray')
ax2.set_axis_off()
ax2.set_title('Corrupted, offset image')
corrupted_pixels = np.random.choice([False, True],
                                    size=image.shape,
                                    p=[0.25, 0.75])

# The shift corresponds to the pixel offset relative to the reference image
offset_image = ndi.shift(image, shift)
offset_image *= corrupted_pixels
print(f"Known offset (row, col): {shift}")

# Determine what the mask is based on which pixels are invalid
# In this case, we know what the mask should be since we corrupted
# the pixels ourselves
mask = corrupted_pixels

detected_shift = masked_register_translation(image, offset_image, mask)

print(f"Detected pixel offset (row, col): {-detected_shift}")

fig = plt.figure(figsize=(8, 3))
ax1 = plt.subplot(1, 3, 1)
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1)
ax3 = plt.subplot(1, 3, 3, sharex=ax1, sharey=ax1)

ax1.imshow(image, cmap='gray')
ax1.set_axis_off()
ax1.set_title('Reference image')

ax2.imshow(offset_image.real, cmap='gray')
ax2.set_axis_off()
ax2.set_title('Corrupted, offset image')