Exemplo n.º 1
0
    def getParams(self):
        img = self.ch1
        hist, bins = np.histogram(img.ravel(), 256, [0, np.max(img)])
        #plt.hist(img.ravel(),256,[0,np.max(img)]); plt.show()
        zero = np.argmax(hist)
        img = img - bins[zero]
        im = np.abs(img)
        threshold = threshold_isodata(im)
        im = im > threshold

        filled = binary_fill_holes(im).astype(int)
        filled = binary_closing(filled)

        A1 = np.count_nonzero(filled)
        P1 = perimeter(filled, neighbourhood=16)
        C1 = 4 * 3.14 * A1 / (P1 * P1)

        img = self.ch6
        hist, bins = np.histogram(img.ravel(), 256, [0, np.max(img)])
        #plt.hist(img.ravel(),256,[0,np.max(img)]); plt.show()
        zero = np.argmax(hist)
        img = img - bins[zero]
        im = np.abs(img)
        threshold = threshold_isodata(im)
        im = im > threshold

        filled = binary_fill_holes(im).astype(int)
        filled = binary_closing(filled)

        A2 = np.count_nonzero(filled)
        P2 = perimeter(filled, neighbourhood=16)
        C2 = 4 * 3.14 * A2 / (P2 * P2)
        params = np.array([A1, P1, C1, A2, P2, C2])
        return params
Exemplo n.º 2
0
def cluster_process(labels, original, activations):
    rbase = np.zeros(labels.shape)
    rubase = np.zeros(labels.shape)
    rubase[range(0,20),:] = 1
    rubase[:,range(0,20)] = 1
    rubase[range(-20,-1),:] = 1
    rubase[:,range(-20,-1)] = 1
    for i in range(1, int(np.max(labels))+1):
        base = np.zeros(labels.shape)
        base[labels==i] = 1
        li = len(base.nonzero()[0])
        if li>0:
            hull = convex_hull_image(base)
            lh =len(hull.nonzero()[0])
            sel_org = base*original
            sel_act = base*activations
            cond = (li > 4000 and float(lh) / float(li) < 1.07 and perimeter(base)**2.0 / li < 30) or np.max(base * rubase) > 0.5
            # print li>4000 and float(lh)/float(li)<1.07, perimeter(base)**2.0/li<30, np.max(base*rubase)>0.5, np.min(original[base>0])
            hard_array =[li > 4000, float(lh) / float(li) < 1.07]
            optional_array = [perimeter(base)**2.0/li < 25,
                              np.percentile(sel_org[sel_org>0], 5) > 0.2,
                              np.percentile(sel_act, 90) - np.percentile(sel_act, 90)]
            print hard_array, optional_array
            if debug and li>1000:
                rs(base,'subspread cluster')
            if cond:
                rbase = rbase + base
    rbase[rubase.astype(np.bool)] = 1
    return dilation(rbase, selem)
Exemplo n.º 3
0
 def peri_area_series(self, levels):
     perimeters = np.zeros(len(levels)-1)
     areas = np.zeros(len(levels)-1)
     for i, level in enumerate(levels):
         mask_image = np.ma.masked_inside(self.data,levels[i],levels[i+1])
         mask_image_outer = np.ma.masked_greater_equal(self.data,levels[i])
         mask_image_inner = np.ma.masked_greater_equal(self.data,levels[i+1])
         perimeters.append((perimeter(mask_image_outer.mask)+perimeter(mask_image_inner.mask)))
         areas.append((self.__len__-np.nansum(mask_image.mask)))
     self.areas = areas
     self.perimeters = perimeters
     
Exemplo n.º 4
0
def ComputePerimeter(binarizedImage):
    perim = measure.perimeter(binarizedImage)
    print('Perimeter calculation complete >>')
    print('Perimeter is:', perim, 'pixels.')
    print('Dimensions of preimeter variable is:', perim.shape)
    print('Perimeter Type:', type(perim))
    return perim
Exemplo n.º 5
0
 def give_Aver(self, srt, name):
     filename = os.path.join(skimage.data_dir, srt + name)
     image = io.imread(filename)
     image_g = rgb2gray(image)
     edges = feature.canny(image_g, sigma=self.sigma)
     aver = measure.perimeter(edges)
     return aver
Exemplo n.º 6
0
def compute_blocky_metric(mtx, kernel_size, sd_thresh, remove_size):
	'''
		Compute perimeter of all connected components for an input matrix after uniform
		smoothing, Z-standardization, and cleaning for small components. 

		input: 
			
		mtx - n * n matrix 
		kernel_size - size of kernel used in smoothing 
		sd_thresh - threshold to use for binarization
		remove_size - filter on number of cells required in connected components


		output: 

		dict of all intermediary quantities (standardized matrix, binarized matrix, cleaned 
		matrix) and the perimeter of the clean matrix.

	'''
	mtx_smooth = smooth(Z, kernel_size)
	Z = standardize(mtx_smooth)
	Z_threshold = binarize(Z, sd_thresh)
	labels = measure.label(Z_threshold)
	Z_clean = remove_small_clusters(Z_threshold, labels, remove_size)
	blockyness = measure.perimeter(Z_clean, neighbourhood=4)
	
	## prepare output dict
	out = {}
	out['mtx_standardize'] = Z
	out['mtx_binarized'] = Z_threshold
	out['mtx_clean'] = Z_clean
	out['perimeter'] = blockyness

	return(out)
def shape_measures(image):
    """Returns features about the 'basic' shape measures:
    * scaled area
    * Solidity
    * Extend
    * Major and minor axes lengths
    * Centroid displacement

    Look at 'http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops' for more informations about these measures."""
    # make image binary
    new_im = image
    new_im[new_im > 0] = 1
    per = perimeter(new_im)
    lbs = label(new_im)
    properties = regionprops(lbs)
    # extract properties of interest
    if len(properties) > 0:
        ratio = properties[0].area / (per * per) # scaled area
        solidity = properties[0].solidity
        extent = properties[0].extent
        major_axis_scaled = properties[0].major_axis_length / per
        minor_axis_scaled = properties[0].minor_axis_length / per
    else:
        ratio = 0
        solidity = 0
        extent = 0
        major_axis_scaled = 0
        minor_axis_scaled = 0
    return [ratio, solidity, extent, major_axis_scaled, minor_axis_scaled]
Exemplo n.º 8
0
    def perimeter(self):
        """
        The perimeter of the source segment, approximated lines through
        the centers of the border pixels using a 4-connectivity.
        """

        from skimage.measure import perimeter
        return perimeter(self._cutout_segment_bool, 4) * u.pix
Exemplo n.º 9
0
 def getChar(self):
     if not self.isPrepared:
         self.preparerMedian()
         print(u'Image en préparation automatique, attention aux paramètres')
     self.char['taux'] = 100*np.sum(self.ready)/float(self.size)
     self.char['temp'],self.char['time'] = finddata(self.filename)
     self.char['perimeter']=measure.perimeter(self.ready)
     
Exemplo n.º 10
0
    def perimeter(self):
        """
        The perimeter of the source segment, approximated lines through
        the centers of the border pixels using a 4-connectivity.
        """

        from skimage.measure import perimeter
        return perimeter(self._cutout_segment_bool, 4) * u.pix
Exemplo n.º 11
0
def batch_loss_perim(y_batch, p_batch):
    print 'blp'
    m = float(y_batch.shape[0])
    bce_loss = sum(bce(y, p) for (y, p) in zip(y_batch, p_batch)) / m
    perim_loss = sum(
        perimeter(np.round(p)) / np.count_nonzero(np.round(p))
        for p in p_batch) / m
    return bce_loss + perim_loss
Exemplo n.º 12
0
def circularity(spot, area):
    if not area:
        return 0

    perim = perimeter(spot)

    if perim != 0:
        return (4 * np.pi * area) / (perim * perim)
    return 0
Exemplo n.º 13
0
 def measure(self, img, m_type: int) -> float:
     mask = img.get_mask(m_type)
     mask_one = mask / mask.max()
     label_img = label(mask_one)
     region = regionprops(label_img)
     area = region[0].area
     per = perimeter(mask_one)
     value = (4 * math.pi * area) / (per**2)
     return value
def extractFeature(name, showall, showbb, flag):

    (img, regions, ax, rthre, cthre) = extractImage(name, showall, showbb,
                                                    flag)

    Features = []
    boxes = []

    for props in regions:
        tmp = []
        minr, minc, maxr, maxc = props.bbox
        if maxc - minc < cthre or maxr - minr < rthre or maxc - minc > cthre * 9 or maxr - minr > rthre * 9:
            continue
        tmp.append(minr)
        tmp.append(minc)
        tmp.append(maxr)
        tmp.append(maxc)
        boxes.append(tmp)
        if showbb == 1:
            ax.add_patch(
                Rectangle((minc, minr),
                          maxc - minc,
                          maxr - minr,
                          fill=False,
                          edgecolor='red',
                          linewidth=1))
        # computing hu moments and removing small components
        roi = img[minr:maxr, minc:maxc]
        m = moments(roi)
        cr = m[0, 1] / m[0, 0]
        cc = m[1, 0] / m[0, 0]
        mu = moments_central(roi, cr, cc)
        nu = moments_normalized(mu)
        hu = moments_hu(nu)

        area = (maxr - minr) * (maxc - minc)
        # add convexity
        p = perimeter(img[minr:maxr, minc:maxc])
        con = (area / (p * p)) * 4 * math.pi
        convex = np.array([con])
        hu = np.concatenate((hu, convex))

        # add density
        den = area / float(props.convex_area)
        dense = np.array([den])
        hu = np.concatenate((hu, dense))

        Features.append(hu)

    # print boxes

    plt.title('Bounding Boxes')
    if showbb == 1:
        io.show()

    return Features, boxes,
Exemplo n.º 15
0
def perimeter_calculation(label_mask):

    perimeter_val=[]

    for slice in range(label_mask.shape[-1]):
        perimeter_val.append(perimeter(label_mask[:,:,slice]))

    average_perimeter = np.sum(perimeter_val)/label_mask.shape[-1]

    return  average_perimeter
Exemplo n.º 16
0
def main():
    data = bf.load_image("test2.h5")
    thres = np.quantile(data.ravel(), 0.65)
    bindata = data // thres
    op_selem = disk(6)
    close_selem = disk(12)
    opened = opening(bindata, op_selem)
    closed = closing(opened, close_selem)
    peri = perimeter(closed)
    area = np.count_nonzero(closed == 1)
    compact = 4 * np.pi * area / (peri**2)
    print(peri, area, compact)
    bf.show_images([data, bindata, opened, closed, canny(closed)])
Exemplo n.º 17
0
def perimeter(mask, invert=False):
    '''
    Calculate total perimeter of all objects in binary image.
    calculates the perimeter of binary 2D shapes

    if background is white and the region of interest black,
    invert should be True.

    Parameters
    ----------
    mask : array_like
        binary image
    '''
    if invert:
        zeroidx = mask == 0
        onesidx = mask == 255
        maskinvert = np.copy(mask)
        maskinvert[zeroidx] = 255
        maskinvert[onesidx] = 0
        return measure.perimeter(maskinvert > 110)
    else:
        return measure.perimeter(mask > 110)
Exemplo n.º 18
0
def get_perimeter(img):
    """
    1. Import the image:
        "as_gray=True" is needed to reshape the original 3D array to a 2D array.
    The perimeter function only accepts 2D arrays.
    
    2. Invert the grayscale. I did this because the standard grayscale image 
    gave me a value of 0.0
    """
    img = io.imread('Rothko_AI/' + img, as_gray=True)
    img = invert(img)

    return perimeter(img, neighbourhood=4)
Exemplo n.º 19
0
def imageFeatures(s):
    tmparr = s.pixel_array
    threshold_mask = tmparr > 800
    tmpmask = ndimage.binary_erosion(threshold_mask, iterations=6)
    closedmask = ndimage.binary_fill_holes(tmpmask)
    n_pixels = np.sum(tmpmask)
    nf_pixels = np.sum(closedmask)  ## # pixels above threshold
    v_pixel = s.PixelSpacing[0] * s.PixelSpacing[1] * s.SliceThickness * 10**(
        -6)  # volume 1 pixel in leters
    size = nf_pixels * v_pixel
    size_hollow = n_pixels * v_pixel
    perimeter = measure.perimeter(closedmask) * s.PixelSpacing[0]
    meanhu = np.mean(tmparr[closedmask])
    return [size, size_hollow, perimeter, meanhu]
Exemplo n.º 20
0
def get_shape_analysis(data,
                       show_plot):  # returns shape analysis features and plots
    thres = np.quantile(data.ravel(), 0.65)
    bindata = data // thres
    op_selem = disk(6)
    close_selem = disk(12)
    opened = opening(bindata, op_selem)
    closed = closing(opened, close_selem)
    peri = perimeter(closed)
    area = np.count_nonzero(closed == 1)
    compact = (peri**2) / (4 * np.pi * area)
    if show_plot:
        bf.show_images([data, bindata, opened, closed, canny(closed)])
    return ([peri, area, compact])
Exemplo n.º 21
0
def circularThresholdLabels(labelImg, circularRange):
    particleList = numpy.unique(labelImg[1:])
    for particle in particleList:
        bImgLabelN = labelImg==particle
        circularity = 0
        area = bImgLabelN.sum()
        perimeter = measure.perimeter(bImgLabelN)
        if (perimeter>0):
            circularity = (4*numpy.pi*area)/(perimeter**2)
        if (circularity>1):
            circularity=1/circularity
        if not(circularity>=circularRange[0] and circularity<=circularRange[1]):
            labelImg[bImgLabelN]=0
    return labelImg
Exemplo n.º 22
0
def circularity(I):
    """
    Circularity criterion
    4*pi*A/P**2
    returns crofton and classic
    """
    P = perimCrofton(I)
    print("Perimeter by crofton: ", P)
    A = np.sum(I)
    C = np.pi*4*A/P**2

    p = measure.perimeter(I, neighbourhood=4)
    print("Usual perimeter: ", p)
    c = np.pi*4*A/p**2
    return C, c
Exemplo n.º 23
0
 def get_sub_compacity(self, sub_images):
     compacities = []
     for index in range(len(sub_images)):
         compacities.append([])
         for index2, im in enumerate(sub_images[index]):
             #contour = measure.find_contours(im, level=0.8)
             #print(contour)
             #exit(0)
             perimeter = measure.perimeter(im, neighbourhood=4)
             area = np.count_nonzero(im)
             compacity = perimeter**2 / area
             if compacity < 4 * np.pi:
                 print("Compacity is too small {} < {}".format(
                     compacity, 4 * np.pi))
                 compacity = 100
             #print("{}.{}:".format(index, index2), perimeter, area, compacity)
             compacities[index].append(compacity)
     return compacities
Exemplo n.º 24
0
def minkoMeasured(G, sigma, hmin, hmax):
    H = np.arange(hmin, hmax, .1)
    A = []
    P = []
    E = []

    bar = progressbar.ProgressBar()
    for h in bar(H):
        levelset = G >= h
        #        A[i] = np.sum(levelset);
        #        P[i] = measure.perimeter(levelset);# perimeter in 4-neighborhood
        #        E[i] = eulerNb4(levelset) # euler number
        a, p, e = bwminko(levelset)
        p = measure.perimeter(levelset)
        A.append(a)
        P.append(p)
        E.append(e)
    return A, P, E
Exemplo n.º 25
0
    def _extract_features(self, labels, intensity):

        self.ndim = labels.ndim
        self.spacing = np.broadcast_to(np.array(self.spacing), self.ndim)
        self.isotropic = np.all(self.spacing == self.spacing[0])

        # map 2D feature names if 3D image
        if self.ndim == 3:
            # skimage regions props uses 2D feature names (e.g. perimeter, area instead of surface, volume respectively)
            features = {
                self._name_mapping_3D_2D.get(f, f)
                for f in self.features
            }
        else:
            features = self.features

        # special case pre: extract "convex_image" to compute missing "convex_perimeter" feature
        if 'convex_perimeter' in features:
            features = [
                'convex_image' if x == 'convex_perimeter' else x
                for x in features
            ]

        # extract actual features
        props = regionprops_table(labels,
                                  intensity_image=intensity,
                                  properties=features,
                                  separator='-')

        # special case post: extract compute missing "convex_perimeter" feature
        convex_images = props.pop('convex_image', None)
        if convex_images is not None:
            props['convex_perimeter'] = [
                perimeter(hull) for hull in convex_images
            ]

        # map back 3D feature names if 3D image
        if self.ndim == 3:
            props = {
                self._name_mapping_2D_3D.get(key, key): val
                for key, val in props.items()
            }

        return props
Exemplo n.º 26
0
def relperimeterthresh(image, exponent = 2):
    try:
        #Lowering the exponent increases tolerance for rough image edges, and is more suitable when
        #there is a large variance in foreground brightness
        lothresh = filters.threshold_triangle(image)
        hithresh = filters.threshold_otsu(image)
        if lothresh > hithresh:
            lothresh = hithresh // 2 
        threshqual = []
        threshsearch = []
        for thresh in range(lothresh, hithresh +10, max((hithresh-lothresh)//5, 1)):
            sample = image > thresh
            threshqual.append((measure.perimeter(sample) ** exponent)/np.sum(sample))
            threshsearch.append(thresh)
        goodthresh = threshsearch[np.argmin(threshqual)]
        return goodthresh
    except:
        try:
            return filters.threshold_otsu(image)
        except ValueError:
            return np.nan
Exemplo n.º 27
0
def selective_search(im_orig,
                     scale=40.0,
                     sigma=0.8,
                     min_size=40,
                     gp=[0.5, 0.5]):
    '''Selective Search
    Parameters
    ----------
        im_orig : ndarray
            Input image
        scale : int
            Free parameter. Higher means larger clusters in felzenszwalb segmentation.
        sigma : float
            Width of Gaussian kernel for felzenszwalb segmentation.
        min_size : int
            Minimum component size for felzenszwalb segmentation.
    Returns
    -------
        img : ndarray
            image with region label
            region label is stored in the 4th value of each pixel [r,g,b,(region)]
        regions : array of dict
            [
                {
                    'rect': (left, top, width, height),
                    'labels': [...],
                    'size': component_size
                },
                ...
            ]
    '''
    assert im_orig.shape[2] == 3, "3ch image is expected"

    # load image and get smallest regions
    # region label is stored in the 4th value of each pixel [r,g,b,(region)]
    img = _generate_segments(im_orig, scale, sigma, min_size)

    if img is None:
        return None, {}

    imsize = img.shape[0] * img.shape[1]
    R = _extract_regions(img)

    # extract neighbouring information
    neighbours = _extract_neighbours(R)

    # calculate initial similarities
    S = {}
    for (ai, ar), (bi, br) in neighbours:
        S[(ai, bi)] = _calc_sim(ar, br, imsize)

    # hierarchal search
    while S != {}:

        # get highest similarity
        i, j = sorted(S.items(), key=lambda i: i[1])[-1][0]

        # merge corresponding regions
        t = max(R.keys()) + 1.0
        R[t] = _merge_regions(R[i], R[j])

        # mark similarities for regions to be removed
        key_to_delete = []
        for k, v in list(S.items()):
            if (i in k) or (j in k):
                key_to_delete.append(k)

        # remove old similarities of related regions
        for k in key_to_delete:
            del S[k]

        # calculate similarity set with the new region
        for k in [a for a in key_to_delete if a != (i, j)]:
            n = k[1] if k[0] in (i, j) else k[0]
            S[(t, n)] = _calc_sim(R[t], R[n], imsize)

    regions = []
    gp[0] = gp[0] * img.shape[1]
    gp[1] = gp[1] * img.shape[0]
    for k, r in list(R.items()):
        # x is width
        width = r['max_x'] - r['min_x']
        height = r['max_y'] - r['min_y']
        if (gp[0]>r['min_x']-0.25*width) and \
           (gp[1]>r['min_y']-0.25*height) and \
           (gp[0]<r['max_x']+width*0.25) and \
           (gp[1]<r['max_y']+height*0.25):
            regions.append({
                'rect': (r['min_x'], r['min_y'], r['max_x'] - r['min_x'],
                         r['max_y'] - r['min_y']),
                'd':
                math.sqrt((gp[0] - (r['min_x'] + r['max_x']) / 2)**2 +
                          (gp[1] - (r['min_y'] + r['max_y']) / 2)**2),
                'size':
                r['size'],
                'labels':
                r['labels'],
                'masks':
                r['masks'],
                'hist_c':
                r['hist_c'],
                'hist_t':
                r['hist_t'],
                'objectness':
                perimeter(r['masks']) / (regionprops(r['masks'].astype(
                    numpy.uint8))[0].major_axis_length + regionprops(
                        r['masks'].astype(numpy.uint8))[0].minor_axis_length),
            })

    return regions
date1 = str(year)+'-01-01T00:00:00'
date2 = str(year)+'-12-31T23:00:00'
it_tot = index_date(MSEAtl.time,date1)[0]
Nt = MSEAtl.time.sel({'time':slice(date1,date2)}).shape[0]
L_CONTOUR[str(year)] = np.zeros((Nt,))
for it in range(Nt):
    print('it=',it,' & it_tot=',it_tot,'               ',end='\r')
    MSE_tmp = MSEAtl[it_tot,:,:]
#     Contour = curve.get_contours(MSE_tmp>np.percentile(MSE_tmp,80))
#     L = 0
#     for j,contour in enumerate(Contour):
#         plt.plot(lonAtl[contour[:,1].astype(int)],latAtl[contour[:,0].astype(int)],color='k')
#         L += np.sum(contour*dx)

    MSE_binary = np.zeros(np.shape(MSE_tmp))
    MSE_binary[MSE_tmp>np.percentile(MSE_tmp, per_thresh)] = 1

    binary_boundary=np.copy(MSE_binary)
    binary_boundary[:,1:-1]=0

    L = dx*(measure.perimeter(MSE_binary,8)- np.sum(binary_boundary))
        
    L_CONTOUR[str(year)][it] = L
    it_tot+=1
    
#### Save the contour length in a pickle file
path_PKL = '/users/jwindmil/2019_WMI/dev/jwindmiller/PKL_DATA/'
hf = open(path_PKL+'10_2_CONTOURL_%i'%(per_thresh)+str(year)+'.pkl','wb')
CONdata = {"Tot_Contour_km":L_CONTOUR,"time":MSEAtl.time}
pickle.dump(CONdata,hf)
hf.close()
Exemplo n.º 29
0

im_crop = get_roi(bw_img)
dist_map = get_roi(bw_dmap)
node_id_image = get_roi(ws_labels)

ax1.imshow(im_crop)

node_dict = {}
for c_node in np.unique(node_id_image[node_id_image > 0]):
    y_n, x_n = np.where(node_id_image == c_node)
    node_dict[c_node] = {
        "x": np.mean(x_n),
        "y": np.mean(y_n),
        "width": np.mean(dist_map[node_id_image == c_node]),
        "perimeter": perimeter(node_id_image == c_node),
    }
    ax1.plot(np.mean(x_n), np.mean(y_n), "rs")

edge_dict = {}

for i in node_dict.keys():
    i_grow = dilation(node_id_image == i, np.ones((3, 3)))
    for j in node_dict.keys():
        if i < j:
            j_grow = dilation(node_id_image == j, np.ones((3, 3)))
            interface_length = np.sum(i_grow & j_grow)
            if interface_length > 0:
                v_nodes = [i, j]

                edge_dict[(i, j)] = {
Exemplo n.º 30
0
    def get_ratio_properties(self, smallest_size, theMask, ratio_intensity,
                             threshold, Img_after, i, j):
        # remove artifacts connected to image border
        self.Labelmask = theMask
        self.ratioImag = ratio_intensity
        self.row_num = i
        self.column_num = j
        self.threshold = threshold
        self.originimg = Img_after

        cleared = self.Labelmask.copy()
        clear_border(cleared)
        # label image regions
        label_image = label(cleared)
        #image_label_overlay = label2rgb(label_image, image=image)

        #fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6))
        #ax.imshow(label_image)
        #contours = find_contours(original_intensity, self.threshold)
        dtype = [('Row index', 'i4'), ('Column index', 'i4'),
                 ('Mean intensity', float), ('Circularity', float),
                 ('Mean intensity in contour', float)]

        region_mean_intensity_list = []
        region_circularit_list = []
        region_meanintensity_contour_list = []

        loopmun = 0
        dirforcellprp = {}
        for region in regionprops(label_image, intensity_image=self.ratioImag):

            # skip small images
            if region.area > smallest_size:

                # draw rectangle around segmented coins
                #minr, minc, maxr, maxc = region.bbox
                #rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr, fill=False, edgecolor='red', linewidth=2)
                #ax.add_patch(rect)
                #centroidint1 = int(region.centroid[0])
                #centroidint2 = int(region.centroid[1])
                #ax.text(centroidint1+50, centroidint2+55, round(region.mean_intensity,3),fontsize=15, style='italic',bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
                region_mean_intensity = region.mean_intensity  #mean intensity of the region, 0 pixels are omitted.
                #allpixelnum = region.bbox_area
                #labeledpixelnum = region.area #number of pixels in region omitting 0.
                filledimg = region.filled_image
                filledperimeter = perimeter(filledimg)
                #Sliced_binary_region_image = region.image
                intensityimage = region.intensity_image
                singlethresh = threshold_otsu(filledimg)
                #print(region.area)
                #print(region.bbox_area)
                #print(region_mean_intensity)
                s = imageanalysistoolbox()
                contourimage = s.contour(filledimg, intensityimage,
                                         singlethresh)
                self.contour_mask = s.inwarddilationmask(
                    contourimage, filledimg, 3)

                filledimg = region.filled_image  #Binary region image with filled holes which has the same size as bounding box.
                filledperimeter = perimeter(filledimg)
                regioncircularity = (4 * math.pi * region.filled_area) / (
                    filledperimeter * filledperimeter
                )  # region.perimeter will count in perimeters from the holes inside
                self.contour_origin_image = self.contour_mask * intensityimage
                contourprops = regionprops(self.contour_mask, intensityimage)
                contour_mean = contourprops[0].mean_intensity
                #print('contour_mean:'+str(contour_mean))

                #print(region_mean_intensity)
                region_mean_intensity_list.append(region_mean_intensity)
                region_circularit_list.append(regioncircularity)
                region_meanintensity_contour_list.append(contour_mean)

                dirforcellprp[loopmun] = (self.row_num, self.column_num,
                                          region_mean_intensity,
                                          regioncircularity, contour_mean)

                loopmun = loopmun + 1

        cell_properties = np.zeros(len(region_mean_intensity_list),
                                   dtype=dtype)
        for p in range(loopmun):
            cell_properties[p] = dirforcellprp[p]

        return region_mean_intensity_list, cell_properties, self.contour_origin_image
dapi=pixels[0,:,:]
plt.imshow(dapi)
GFP=pixels[1,:,:]
plt.imshow(GFP)

block_size = 21
nmask = threshold_local(dapi, block_size,offset=0.0004)
nmask2 = dapi > nmask
plt.imshow(nmask2)
nmask3 = binary_opening(nmask2, structure=np.ones((3,3))).astype(np.float64)
plt.imshow(nmask3)

nmask4 = binary_fill_holes(nmask3)
plt.imshow(nmask4)
perimeter(nmask4, neighbourhood=4)  
all_labels = measure.label(nmask4)
plt.imshow(all_labels)


label_objects, nb_labels = label(all_labels)
plt.imshow(label_objects)
sizes = np.bincount(label_objects.ravel())
#np.histogram(sizes, bins=10, range=None)
#plt.hist(sizes, bins='auto')
#plt.show()
mask_sizes = sizes > 250   #all the values larger than 250 is True
mask_sizes[0] = 0 #column 0, False will get the value of zero  
gsegg = mask_sizes[label_objects]
gsegg, nb_labels = label(gsegg) 
plt.imshow(gsegg)
Exemplo n.º 32
0
    def get_cell_dictionary(self, smallest_size, theMask, threshold,
                            intensity_bef, intensty_aft, i, j, contour_thres,
                            contour_dilationparameter):
        # remove artifacts connected to image border
        self.Labelmask = theMask
        self.Imagbef = intensity_bef
        self.Imageaft = intensty_aft
        self.row_num = i
        self.column_num = j
        self.threshold = threshold
        self.contour_thres = contour_thres
        self.contour_dilationparameter = contour_dilationparameter

        cleared = self.Labelmask.copy()
        clear_border(cleared)
        # label image regions
        label_image = label(cleared)

        self.individual_cell_dic_bef = {}
        self.individual_cell_dic_aft = {}

        loopmun = 0
        for region in regionprops(label_image, intensity_image=self.Imagbef
                                  ):  # USE image before perfusion as template

            # skip small images
            if region.area > smallest_size:

                # draw rectangle around segmented coins
                minr, minc, maxr, maxc = region.bbox

                region_mean_intensity = region.mean_intensity  #mean intensity of the region, 0 pixels in label are omitted.
                #allpixelnum = region.bbox_area
                #labeledpixelnum = region.area #number of pixels in region omitting 0.
                filledimg = region.filled_image
                filledperimeter = perimeter(filledimg)
                #Sliced_binary_region_image = region.image
                self.intensityimage_intensity = region.intensity_image  # need a copy of this cause region will be altered by s.contour
                #self.regionimage_before = self.intensityimage_intensity.copy()
                #self.regionimage_after = self.Imageaft[minr:maxr, minc:maxc]

                #Get 2 more pixels out of boundary box in case of cell movements
                #We need to add 2 rows and columns of 0 to the whole FOV in case cells detected at the edge
                expanded_image_container_bef = np.zeros(
                    (self.Imagbef.shape[0] + 4, self.Imagbef.shape[1] + 4))
                expanded_image_container_bef[2:self.Imagbef.shape[0] + 2,
                                             2:self.Imagbef.shape[1] +
                                             2] = self.Imagbef

                expanded_image_container_aft = np.zeros(
                    (self.Imageaft.shape[0] + 4, self.Imageaft.shape[1] + 4))
                expanded_image_container_aft[2:self.Imageaft.shape[0] + 2,
                                             2:self.Imageaft.shape[1] +
                                             2] = self.Imageaft

                self.regionimage_before = expanded_image_container_bef[minr -
                                                                       2:maxr +
                                                                       2,
                                                                       minc -
                                                                       2:maxc +
                                                                       2]
                self.regionimage_after = expanded_image_container_aft[minr -
                                                                      2:maxr +
                                                                      2, minc -
                                                                      2:maxc +
                                                                      2]

                self.regionimage_before_for_contour = self.regionimage_before.copy(
                )
                self.regionimage_after_for_contour = self.regionimage_after.copy(
                )

                self.individual_cell_dic_bef[str(
                    loopmun
                )] = self.regionimage_before_for_contour  # put each cell region into a dictionary
                self.individual_cell_dic_aft[str(
                    loopmun)] = self.regionimage_after_for_contour
                loopmun = loopmun + 1

        return self.individual_cell_dic_bef, self.individual_cell_dic_aft
Exemplo n.º 33
0
def compactness(labelled, label):
    return 4 * np.pi * np.sum(labelled == label) / (perimeter(
        labelled == label)**2)
# EXTRACAO DE CARACTERISTICAS
f_1 = [0, 0, 0]
f_2 = [0, 0, 0]

img_1 = np.divide(img_1, 255.0)
img_2 = np.divide(img_2, 255.0)

prop1 = img_1.shape[0]*img_1.shape[1]
prop2 = img_2.shape[0]*img_2.shape[1]

# AREAS
f_1[0] = np.sum(img_1)/prop1
f_2[0] = np.sum(img_2)/prop2

# PERIMETROS
f_1[1] = perimeter(img_1)/prop1
f_2[1] = perimeter(img_2)/prop2

f_1[2] = dist_1/prop1
f_2[2] = dist_2/prop2

person = pearsonr(f_1, f_2)
dist = (distance.euclidean(f_1, f_2))*100

print np.abs((person[0]*100)-dist)

plt.subplot(121), plt.imshow(img_1, cmap='gray')
plt.title(''), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(img_2, cmap='gray')
plt.title(''), plt.xticks([]), plt.yticks([])
Exemplo n.º 35
0
def morphologyStats(image, res):
    perim = (float(perimeter(image)) / res) * (2.0 + 35.0/64.0)
    area = (float(np.sum(image != 0)) / (res**2)) * ((2.0 + 35.0/64.0)**2)
    dissection = (4 * area) / (perim ** 2)
    compactness = (perim ** 2) / area
    return (perim, area, dissection, compactness)