Exemplo n.º 1
0
    def test_identity_affine_constant_velocity_fields(self, deform_to):

        num_timesteps = 10

        template_shape = (3, 4, 5)
        template_resolution = 1
        target_shape = (2, 4, 6)
        target_resolution = 1
        velocity_fields = np.ones(
            (*template_shape, num_timesteps, len(template_shape)))
        velocity_field_resolution = 1
        affine = np.eye(4)

        if deform_to == "template":
            expected_output = (_lddmm_utilities._compute_coords(
                template_shape, template_resolution) + 1)
        elif deform_to == "target":
            expected_output = (_lddmm_utilities._compute_coords(
                target_shape, target_resolution) - 1)

        position_field = generate_position_field(
            affine=affine,
            velocity_fields=velocity_fields,
            velocity_field_resolution=velocity_field_resolution,
            template_shape=template_shape,
            template_resolution=template_resolution,
            target_shape=target_shape,
            target_resolution=target_resolution,
            deform_to=deform_to,
        )

        assert np.allclose(position_field, expected_output)
Exemplo n.º 2
0
    def test_identity_position_field_different_output_resolution(self):

        subject = np.array([
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
        ])
        subject_resolution = 1
        output_resolution = 2
        output_shape = None
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution)

        deformed_subject = _transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            output_shape=output_shape,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = np.array([
            [0, 0, 0, 0],
            [0, 1, 1, 0],
            [0, 1, 1, 0],
            [0, 0, 0, 0],
        ])
        assert np.allclose(deformed_subject, expected_output)
Exemplo n.º 3
0
    def test_identity_position_fields(self, deform_to):

        subject = np.array([
            [0, 0, 0, 0],
            [0, 1, 1, 0],
            [0, 1, 1, 0],
            [0, 0, 0, 0],
        ])
        subject_resolution = 1
        output_resolution = None
        output_shape = None
        template_shape = (3, 4)
        template_resolution = 1
        target_shape = (2, 5)
        target_resolution = 1
        extrapolation_fill_value = np.quantile(subject, 10**-subject.ndim)

        affine_phi = _lddmm_utilities._compute_coords(template_shape,
                                                      template_resolution)
        phi_inv_affine_inv = _lddmm_utilities._compute_coords(
            target_shape, target_resolution)

        expected_output = _transform_image(
            subject,
            subject_resolution,
            output_resolution,
            output_shape,
            position_field=affine_phi
            if deform_to == "template" else phi_inv_affine_inv,
            position_field_resolution=template_resolution
            if deform_to == "template" else target_resolution,
            extrapolation_fill_value=extrapolation_fill_value,
        )

        deformed_subject = lddmm_transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            deform_to=deform_to,
            extrapolation_fill_value=extrapolation_fill_value,
            affine_phi=affine_phi,
            phi_inv_affine_inv=phi_inv_affine_inv,
            template_resolution=template_resolution,
            target_resolution=target_resolution,
        )

        assert np.array_equal(deformed_subject, expected_output)
Exemplo n.º 4
0
 def test_2D_shape_zero_origin(self):
     kwargs = dict(shape=(3, 4), resolution=1, origin="zero")
     correct_output = np.array([
         [[0, 0], [0, 1], [0, 2], [0, 3]],
         [[1, 0], [1, 1], [1, 2], [1, 3]],
         [[2, 0], [2, 1], [2, 2], [2, 3]],
     ])
     assert np.array_equal(_compute_coords(**kwargs), correct_output)
Exemplo n.º 5
0
    def test_identity_position_field(self):

        subject = np.arange(3 * 4).reshape(3, 4)
        subject_resolution = 1
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution)
        points = _lddmm_utilities._compute_coords(subject.shape,
                                                  position_field_resolution)

        transformed_points = _transform_points(
            points=points,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = points
        assert np.array_equal(transformed_points, expected_output)
Exemplo n.º 6
0
    def test_rotational_affine_identity_velocity_fields(self, deform_to):

        num_timesteps = 10

        template_shape = (3, 4, 5)
        template_resolution = 1
        target_shape = (2, 4, 6)
        target_resolution = 1
        velocity_fields = np.zeros(
            (*template_shape, num_timesteps, len(template_shape)))
        velocity_field_resolution = 1
        # Indicates a 90 degree rotation to the right.
        affine = np.array([
            [0, 1, 0, 0],
            [-1, 0, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ])

        if deform_to == "template":
            expected_output = _lddmm_utilities._multiply_coords_by_affine(
                affine,
                _lddmm_utilities._compute_coords(template_shape,
                                                 template_resolution),
            )
        elif deform_to == "target":
            expected_output = _lddmm_utilities._multiply_coords_by_affine(
                inv(affine),
                _lddmm_utilities._compute_coords(target_shape,
                                                 target_resolution),
            )

        position_field = generate_position_field(
            affine=affine,
            velocity_fields=velocity_fields,
            velocity_field_resolution=velocity_field_resolution,
            template_shape=template_shape,
            template_resolution=template_resolution,
            target_shape=target_shape,
            target_resolution=target_resolution,
            deform_to=deform_to,
        )

        assert np.allclose(position_field, expected_output)
Exemplo n.º 7
0
 def test_identity_affine_3D(self):
     affine = (
         np.eye(4)
         + np.append(np.arange(3 * 4).reshape(3, 4), np.zeros((1, 4)), 0) ** 2
     )
     array = _compute_coords((3, 4, 5), 1)
     result = _multiply_coords_by_affine(affine, array)
     arrays = []
     for dim in range(3):
         arrays.append(np.sum(affine[dim, :-1] * array, axis=-1) + affine[dim, -1])
     expected = np.stack(arrays=arrays, axis=-1)
     assert np.array_equal(result, expected)
Exemplo n.º 8
0
    def test_identity_position_fields(self, deform_to):

        template_shape = (3, 4)
        template_resolution = 1
        target_shape = (2, 5)
        target_resolution = 1

        affine_phi = _lddmm_utilities._compute_coords(template_shape,
                                                      template_resolution)
        phi_inv_affine_inv = _lddmm_utilities._compute_coords(
            target_shape, target_resolution)

        if deform_to == "template":
            points = _lddmm_utilities._compute_coords(target_shape,
                                                      target_resolution)
            position_field = phi_inv_affine_inv
            position_field_resolution = target_resolution
        else:
            points = _lddmm_utilities._compute_coords(template_shape,
                                                      template_resolution)
            position_field = affine_phi
            position_field_resolution = template_resolution

        expected_output = _transform_points(
            points=points,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )

        transformed_points = lddmm_transform_points(
            points=points,
            deform_to=deform_to,
            affine_phi=affine_phi,
            phi_inv_affine_inv=phi_inv_affine_inv,
            template_resolution=template_resolution,
            target_resolution=target_resolution,
        )

        assert np.array_equal(transformed_points, expected_output)
Exemplo n.º 9
0
    def test_constant_position_field_trivial_extrapolation(self):

        # Note: applying a leftward shift to the position_field is done by subtracting 1 from the appropriate dimension.
        # The corresponding effect on the deformed_subject is a shift to the right.

        subject = np.array([
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 1, 1, 1, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
        ])
        subject_resolution = 1
        output_resolution = 1
        output_shape = None
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution) + [
                0,
                -1,
            ]  # Shift to the left by 1.

        deformed_subject = _transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            output_shape=output_shape,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = np.array([
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 1, 1, 1, 0],
            [0, 0, 0, 1, 1, 1, 1, 0],
            [0, 0, 0, 1, 1, 1, 1, 0],
            [0, 0, 0, 1, 1, 1, 1, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 0],
        ])

        assert np.allclose(deformed_subject, expected_output)
Exemplo n.º 10
0
    def test_rotational_position_field(self):

        # Note: applying an affine indicating a clockwise-rotation to a position_field produces a position _ield rotated counter-clockwise.
        # The corresponding effect on the deformed_subject is a counter-clockwise rotation.

        subject = np.array([
            [0, 1, 0, 0],
            [0, 1, 0, 0],
            [0, 1, 0, 0],
            [0, 1, 1, 1],
        ])
        subject_resolution = 1
        output_resolution = 1
        output_shape = None
        position_field_resolution = subject_resolution
        # Indicates a 90 degree rotation to the right.
        affine = np.array([
            [0, 1, 0],
            [-1, 0, 0],
            [0, 0, 1],
        ])
        position_field = _lddmm_utilities._multiply_coords_by_affine(
            affine,
            _lddmm_utilities._compute_coords(subject.shape,
                                             position_field_resolution),
        )

        deformed_subject = _transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            output_shape=output_shape,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = np.array([
            [0, 0, 0, 1],
            [0, 0, 0, 1],
            [1, 1, 1, 1],
            [0, 0, 0, 0],
        ])

        assert np.allclose(deformed_subject, expected_output)
Exemplo n.º 11
0
    def test_rotational_position_field(self):

        # Note: applying an affine indicating a clockwise-rotation to a position_field produces a position _ield rotated counter-clockwise.
        # The corresponding effect on a deformed image is a counter-clockwise rotation.

        subject = np.array([
            [0, 1, 0],
            [0, 1, 0],
            [0, 1, 1],
        ])
        subject_resolution = 1
        position_field_resolution = subject_resolution
        # Indicates a 90 degree rotation to the right.
        affine = np.array([
            [0, 1, 0],
            [-1, 0, 0],
            [0, 0, 1],
        ])
        position_field = _lddmm_utilities._multiply_coords_by_affine(
            affine,
            _lddmm_utilities._compute_coords(subject.shape,
                                             position_field_resolution),
        )
        # The middle column.
        points = np.array([
            [-1, 0],
            [0, 0],
            [1, 0],
        ])

        transformed_points = _transform_points(
            points=points,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        # The middle row.
        expected_output = np.array([
            [0, 1],
            [0, 0],
            [0, -1],
        ])
        assert np.array_equal(transformed_points, expected_output)
Exemplo n.º 12
0
    def test_identity_position_field_equal_output_resolution(self):

        subject = np.arange(3 * 4).reshape(3, 4)
        subject_resolution = 1
        output_resolution = 1
        output_shape = None
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution)

        deformed_subject = _transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            output_shape=output_shape,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = subject
        assert np.allclose(deformed_subject, expected_output)
Exemplo n.º 13
0
    def test_constant_position_field(self):

        # Note: applying a leftward shift to the position_field is done by subtracting 1 from the appropriate dimension.
        # The corresponding effect on a deformed image is a shift to the right.

        subject = np.array([
            [0, 1, 3],
            [4, 5, 6],
            [7, 8, 9],
        ])
        subject_resolution = 1
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution) + [
                0,
                -1,
            ]  # Shift to the left by 1.
        # The right column.
        points = np.array([
            [-1, 1],
            [0, 1],
            [1, 1],
        ])

        transformed_points = _transform_points(
            points=points,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        # The middle column.
        expected_output = np.array([
            [-1, 0],
            [0, 0],
            [1, 0],
        ])
        assert np.array_equal(transformed_points, expected_output)
Exemplo n.º 14
0
    def test_constant_position_field_linear_extrapolation(self):

        # Idiosyncratic extrapolation behavior is demonstrated with a nonzero gradient at the extrapolated edge.

        subject = np.array([
            [0, 0, 0, 0],
            [0, 1, 1, 0],
            [0, 1, 1, 0],
            [0, 0, 0, 0],
        ])
        subject_resolution = 1
        output_resolution = 1
        output_shape = None
        position_field_resolution = subject_resolution
        position_field = _lddmm_utilities._compute_coords(
            subject.shape, position_field_resolution) + [
                0,
                -1,
            ]  # Shift to the left by 1.

        deformed_subject = _transform_image(
            subject=subject,
            subject_resolution=subject_resolution,
            output_resolution=output_resolution,
            output_shape=output_shape,
            position_field=position_field,
            position_field_resolution=position_field_resolution,
        )
        expected_output = np.array([
            [0, 0, 0, 0],
            [-1, 0, 1, 1],
            [-1, 0, 1, 1],
            [0, 0, 0, 0],
        ])

        assert np.allclose(deformed_subject, expected_output)
Exemplo n.º 15
0
 def test_1D_shape_center_origin(self):
     kwargs = dict(shape=5, resolution=1, origin="center")
     correct_output = np.array([[-2], [-1], [0], [1], [2]])
     assert np.array_equal(_compute_coords(**kwargs), correct_output)