Exemplo n.º 1
0
def test_chan_vese_incorrect_level_set():
    img = np.zeros((10, 10))
    ls = np.zeros((10, 9))
    with testing.raises(ValueError):
        chan_vese(img, mu=0.0, init_level_set=ls)
    with testing.raises(ValueError):
        chan_vese(img, mu=0.0, init_level_set="a")
Exemplo n.º 2
0
def test_chan_vese_flat_level_set():
    # because the algorithm evolves the level set around the
    # zero-level, it the level-set has no zero level, the algorithm
    # will not produce results in theory. However, since a continuous
    # approximation of the delta function is used, the algorithm
    # still affects the entirety of the level-set. Therefore with
    # infinite time, the segmentation will still converge.
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    ls = np.full((10, 10), 1000)
    result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=ls)
    assert_array_equal(result.astype(np.float), np.ones((10, 10)))
    result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set=-ls)
    assert_array_equal(result.astype(np.float), np.zeros((10, 10)))
Exemplo n.º 3
0
def test_chan_vese_gap_closing():
    ref = np.zeros((20, 20))
    ref[8:15, :] = np.ones((7, 20))
    img = ref.copy()
    img[:, 6] = np.zeros((20))
    result = chan_vese(img, mu=0.7, tol=1e-3, max_iter=1000, dt=1000,
                       init_level_set="disk").astype(np.float)
    assert_array_equal(result, ref)
Exemplo n.º 4
0
def test_chan_vese_remove_noise():
    ref = np.zeros((10, 10))
    ref[1:6, 1:6] = np.array([[0, 1, 1, 1, 0],
                              [1, 1, 1, 1, 1],
                              [1, 1, 1, 1, 1],
                              [1, 1, 1, 1, 1],
                              [0, 1, 1, 1, 0]])
    img = ref.copy()
    img[8, 3] = 1
    result = chan_vese(img, mu=0.3, tol=1e-3, max_iter=100, dt=10,
                       init_level_set="disk").astype(np.float)
    assert_array_equal(result, ref)
Exemplo n.º 5
0
def test_chan_vese_simple_shape():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-8).astype(np.float)
    assert_array_equal(result, img)
Exemplo n.º 6
0
def test_chan_vese_extended_output():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-8, extended_output=True)
    assert_array_equal(len(result), 3)
Sevmom = []
Local_binary = []
Hist = []
Final_list = []
# calling function which reads training images
training_data = image_resize()
ch = 0
for i in training_data:
    # Splitting image to B, G and R planes
    image, G, R = cv2.split(i)
    # Applying chan-vese segmentation on blue plane
    cv = chan_vese(image,
                   mu=0.5,
                   lambda1=1,
                   lambda2=1,
                   tol=1e-3,
                   max_iter=300,
                   dt=0.5,
                   init_level_set="checkerboard",
                   extended_output=True)
    ch = ch + 1
    print(ch)

    segmented.append(cv[0])
# New B, G and R planes for image
B = np.zeros([300, 300])
G = np.zeros([300, 300])
R = np.zeros([300, 300])
count = 0
suck = 0
for i in segmented:
Exemplo n.º 8
0
def test_chan_vese_simple_shape():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-8).astype(np.float)
    assert_array_equal(result, img)
    # s = np.linspace(0, 2*np.pi, 400)
    # r = 100 + 100*np.sin(s)
    # c = 220 + 100*np.cos(s)
    # init = np.array([r, c]).T
    # snake = active_contour(gaussian(a8, 3),
    #                    init, alpha=0.015, beta=10, gamma=0.001,
    #                    coordinates='rc')
    # fig, ax = plt.subplots(figsize=(7, 7))
    # ax.imshow(a8, cmap=plt.cm.gray)
    # ax.plot(init[:, 0], init[:, 1], '--r', lw=3)
    # ax.plot(snake[:, 0], snake[:, 1], '-b', lw=3)
    # ax.set_xticks([]), ax.set_yticks([])
    # ax.axis([0, a8.shape[1], a8.shape[0], 0])
    # plt.show()

    # Feel free to play around with the parameters to see how they impact the result
    cv = chan_vese(img_scaled.astype(float), mu=0.3, lambda1=1, lambda2=1, tol=1e-3, max_iter=200,
                dt=0.5, init_level_set="checkerboard", extended_output=True)

    fig, axes = plt.subplots(1, 2, figsize=(8, 8))
    ax = axes.flatten()

    ax[0].imshow(img_scaled, cmap="gray")
    ax[0].set_axis_off()
    ax[0].set_title("Original Image", fontsize=12)

    ax[1].imshow(cv[0], cmap="gray")
    ax[1].set_axis_off()
    title = "Chan-Vese segmentation - {} iterations".format(len(cv[2]))
    ax[1].set_title(title, fontsize=12)
    plt.show()
Exemplo n.º 10
0
    img_f_t = Local_Homogeneity_Filter(img_f)

    #Save_as_tiff('save_path', img_filtered, 'CR2_LHF')

    #Save_as_tiff('save_path', img_f, 'CR2_LHF_Average')

    #Save_as_tiff('save_path', img_f_t, 'CR2_LHF_Average_threshold')

    img_f_t_average = Average_Filter(img_f_t, 50)
    #Save_as_tiff('save_path', img_f_t_average, 'CR2_LHF_Average_threshold_average')

    img_f_t_average_cv = chan_vese(img_f_t_average,
                                   mu=0.01,
                                   lambda1=1,
                                   lambda2=1,
                                   tol=1e-3,
                                   max_iter=200,
                                   dt=0.5,
                                   init_level_set="checkerboard",
                                   extended_output=True)
    img_f_t_average_cv_1 = img_f_t_average_cv[0]
    img_f_t_average_cv_1 = img_f_t_average_cv_1[extend_window:extend_window +
                                                X + 1,
                                                extend_window:extend_window +
                                                Y + 1]
    #Save_as_tiff('save_path', img_f_t_average_cv_1, 'CR2_LHF_Average_threshold_average_CV')

    img_f_t_average_cv_rm = mor.remove_small_objects(img_f_t_average_cv_1,
                                                     min_size=600,
                                                     connectivity=1,
                                                     in_place=False)
Exemplo n.º 11
0
def test_chan_vese_blank_image():
    img = np.zeros((10, 10))
    level_set = np.random.rand(10, 10)
    ref = level_set > 0
    result = chan_vese(img, mu=0.0, tol=0.0, init_level_set=level_set)
    assert_array_equal(result, ref)
Exemplo n.º 12
0
def test_chan_vese_incorrect_image_type():
    img = np.zeros((10, 10, 3))
    ls = np.zeros((10, 9))
    with pytest.raises(ValueError):
        chan_vese(img, mu=0.0, init_level_set=ls)
Exemplo n.º 13
0
def test_chan_vese_extended_output():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-8, extended_output=True)
    assert_array_equal(len(result), 3)
Exemplo n.º 14
0
def test_chan_vese_blank_image():
    img = np.zeros((10, 10))
    level_set = np.random.rand(10, 10)
    ref = level_set > 0
    result = chan_vese(img, mu=0.0, tol=0.0, init_level_set=level_set)
    assert_array_equal(result, ref)
Exemplo n.º 15
0
def test_chan_vese_small_disk_level_set():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set="small disk")
    assert_array_equal(result.astype(np.float), img)
Exemplo n.º 16
0
       Luminita Vese, Scale-Space Theories in Computer Vision, 1999,
       :DOI:`10.1007/3-540-48236-9_13`
.. [2] Chan-Vese Segmentation, Pascal Getreuer, Image Processing On
       Line, 2 (2012), pp. 214-224,
       :DOI:`10.5201/ipol.2012.g-cv`
.. [3] The Chan-Vese Algorithm - Project Report, Rami Cohen, 2011
       :arXiv:`1107.2782`
"""
import numpy as np
import matplotlib.pyplot as plt
from skimage import data, img_as_float
from skimage.segmentation import chan_vese

image = img_as_float(data.camera())
# Feel free to play around with the parameters to see how they impact the result
cv = chan_vese(image, mu=0.25, lambda1=1, lambda2=1, tol=1e-3, max_iter=200,
               dt=0.5, init_level_set="checkerboard", extended_output=True)

fig, axes = plt.subplots(2, 2, figsize=(8, 8))
ax = axes.flatten()

ax[0].imshow(image, cmap="gray")
ax[0].set_axis_off()
ax[0].set_title("Original Image", fontsize=12)

ax[1].imshow(cv[0], cmap="gray")
ax[1].set_axis_off()
title = "Chan-Vese segmentation - {} iterations".format(len(cv[2]))
ax[1].set_title(title, fontsize=12)

ax[2].imshow(cv[1], cmap="gray")
ax[2].set_axis_off()
Exemplo n.º 17
0
def test_chan_vese_small_disk_level_set():
    img = np.zeros((10, 10))
    img[3:6, 3:6] = np.ones((3, 3))
    result = chan_vese(img, mu=0.0, tol=1e-3, init_level_set="small disk")
    assert_array_equal(result.astype(np.float), img)