Exemplo n.º 1
0
def nfold(im, mod, img_plane=(0, 1), center=None, mask=None, fill_value=0.0):
    """
    Returns an images averaged according to n-fold rotational symmetry. This can be used to
    boost the signal-to-noise ratio on an image with known symmetry, e.g. a diffraction pattern.
    Parameters
    ----------
    im : array_like, ndim 2
        Image to be azimuthally-symmetrized.
    center : array_like, shape (2,) or None, optional
        Coordinates of the center (in pixels). If ``center=None``, the image is rotated around
        its center, i.e. ``center=(rows / 2 - 0.5, cols / 2 - 0.5)``.
    mod : int
        Fold symmetry number. Valid numbers must be a divisor of 360.
    mask : `~numpy.ndarray` or None, optional
        Mask of `image`. The mask should evaluate to `True` (or 1) on valid pixels.
        If None (default), no mask is used.
    fill_value : float, optional
        In the case of a mask that overlaps with itself when rotationally averaged,
        the overlapping regions will be filled with this value.
    Returns
    -------
    out : `~numpy.ndarray`, dtype float
        Symmetrized image.
    Raises
    ------
    ValueError : If `mod` is not a divisor of 360 deg.
    """
    if 360 % mod:
        raise ValueError(
            f"{mod}-fold rotational symmetry is not valid (not a divisor of 360)."
        )
    angles = range(0, 360, int(360 / mod))

    ax = (5, 3)

    # Data-type must be float because of use of NaN
    im = np.array(im, dtype=np.float, copy=True)

    # sort axis to have image plane "in front"
    im = im.swapaxes(0, img_plane[0]).swapaxes(1, img_plane[1])
    if mask is not None:
        im[np.logical_not(mask)] = np.nan

    kwargs = {
        "center": center,
        "mode": "constant",
        "cval": 0,
        "preserve_range": True
    }

    # Use weights because edges of the pictures, which might be cropped by the rotation
    # should not count in the average
    wt = np.ones_like(im, dtype=np.uint8)
    weights = (skrotate(wt, angle, **kwargs) for angle in angles)
    rotated = (skrotate(im, angle, **kwargs) for angle in angles)

    avg = average(rotated, weights=weights)  #, ignore_nan=True)
    # sort axis back to original positions
    avg = avg.swapaxes(img_plane[1], 1).swapaxes(img_plane[0], 0)
    return nan_to_num(avg, fill_value, copy=False)
Exemplo n.º 2
0
def rotate(img, mask, angle):
    angle = np.random.uniform(-1,1) * angle
    imr = skrotate(img, angle, order=2)
    imr *= 255
    maskr = skrotate(mask, angle, order=0)
    maskr *= 255
    return imr.astype(np.uint8), maskr.astype(np.uint8)
def classify_image(sc, clf, rate, sliding_window, show_plot, rotate, ax):
    frame = read_image()

    if rotate:
        frame = skrotate(frame, rotate)

    if sliding_window:
        sections = list(slide(frame, (26,18), (5,5)))

        if show_plot:
            ax.clear()
            plt.imshow(frame)

        for coord, img in sections:
            if clf.predict(img.flatten().reshape(1, -1)) == 1:
                click.echo(coord)

                if show_plot:
                    ax.add_patch(
                        patches.Rectangle(
                            coord,
                            18,
                            26,
                            fill=False
                        )
                    )

        if show_plot:
            plt.draw()

    else:
        click.echo(clf.predict(frame.flatten().reshape(1, -1)))

    sc.enter(rate, 1, classify_image, (sc, clf, rate, sliding_window, show_plot, rotate, ax))
Exemplo n.º 4
0
def rotate(proj_img_list, rotation_angle):
    '''rotates voronoi diagram according to the specified -rot_angle'''

    rotate_img_list = []
    for img in proj_img_list:
        # do four 90 degree rotations if rot_angle = 0
        if rotation_angle == 0:

            rotate_img_list.append(img)
            rotate_img_list.append(skrotate(img, angle=90))
            rotate_img_list.append(skrotate(img, angle=180))
            rotate_img_list.append(skrotate(img, angle=270))
        elif rotation_angle == 1:
            # no rotation
            rotate_img_list.append(skrotate(img, angle=0))
        elif rotation_angle == 2:
            # 90 degree rotation
            rotate_img_list.append(skrotate(img, angle=90))
        elif rotation_angle == 3:
            # 180 degree rotation
            rotate_img_list.append(skrotate(img, angle=180))
        elif rotation_angle == 4:
            # 270 degree rotation
            rotate_img_list.append(skrotate(img, angle=270))
    return rotate_img_list
Exemplo n.º 5
0
def rotate(proj_img_list, rotation_angle):
    rotate_img_list = []
    for img in proj_img_list:
        if rotation_angle == 0:

            rotate_img_list.append(img)
            rotate_img_list.append(skrotate(img, angle=90))
            rotate_img_list.append(skrotate(img, angle=180))
            rotate_img_list.append(skrotate(img, angle=270))
        elif rotation_angle == 1:
            rotate_img_list.append(skrotate(img, angle=0))
        elif rotation_angle == 2:
            rotate_img_list.append(skrotate(img, angle=90))
        elif rotation_angle == 3:
            rotate_img_list.append(skrotate(img, angle=180))
        elif rotation_angle == 4:
            rotate_img_list.append(skrotate(img, angle=270))
    return rotate_img_list
Exemplo n.º 6
0
    def symmetrize_rotation(
            self,
            rot_plane,
            order,
            spline_order=3,
            mode='wrap',
            method='xr',
            update=True,
            ret=False):  # TODO: fix n-dimensional rotation and 0/nan handling

        if isinstance(rot_plane[0], int):
            rot_plane = rot_plane
        elif isinstance(rot_plane[0], str):
            rot_plane = [self.dims.index(x) for x in rot_plane]

        if 360 % order:
            raise ValueError(
                f"{order}-fold rotational symmetry is not valid (not a divisor of 360)."
            )
        angles = range(0, 360, int(360 / order))

        if method == 'np':
            symdata = self.data.copy(
            )  # np.array(self.data, dtype=np.float, copy=True)

            # bring plane on which to perform symmetrization to the "front"
            symdata = symdata.swapaxes(0,
                                       rot_plane[0]).swapaxes(1, rot_plane[1])

            wt = np.ones_like(symdata, dtype=np.uint8)
            kwargs = {
                "mode": "constant",
                "cval": 0,
                "preserve_range": True
            }  # TODO: re-introduce "center": center

            weights = [skrotate(wt, angle, **kwargs) for angle in angles]
            rotated = [skrotate(symdata, angle, **kwargs) for angle in angles]
            symdata = np.average(rotated, weights=weights, axis=0)
            symdata = symdata.swapaxes(rot_plane[1],
                                       1).swapaxes(rot_plane[0], 0)
        elif method == 'xr':
            rotargs = {
                'axes': rot_plane,
                'reshape': True,
                'output': None,
                'order': spline_order,
                'mode': mode,
                'cval': 0.0,
                'prefilter': True
            }
            rotated = [
                xr.DataArray(data=sprotate(self.data, angle, **rotargs),
                             coords=self.coords,
                             dims=self.dims) for angle in angles
            ]
            symdata = xr.concat(
                [self.where(self > 0), *[r.where(r > 0) for r in rotated]],
                dim='temp').mean('temp')

        if update:
            self.data = symdata
        if ret:
            return symdata
Exemplo n.º 7
0
def reflection(im,
               angle,
               img_plane=(0, 1),
               center=None,
               mask=None,
               fill_value=0.0):
    """
    Symmetrize an image according to a reflection plane.
    Parameters
    ----------
    im : array_like, ndim 2
        Image to be symmetrized.
    angle : float
        Angle (in degrees) of the line that defines the reflection plane. This angle
        increases counter-clockwise from the positive x-axis. Angles
        larger that 360 are mapped back to [0, 360). Note that ``angle`` and ``angle + 180``
        are equivalent.
    center : array_like, shape (2,) or None, optional
        Coordinates of the center (in pixels). If ``center=None``, the image is rotated around
        its center, i.e. ``center=(rows / 2 - 0.5, cols / 2 - 0.5)``.
    mask : `~numpy.ndarray` or None, optional
        Mask of `image`. The mask should evaluate to `True` (or 1) on valid pixels.
        If None (default), no mask is used.
    fill_value : float, optional
        In the case of a mask that overlaps with itself when rotationally averaged,
        the overlapping regions will be filled with this value.
    Returns
    -------
    out : `~numpy.ndarray`, dtype float
        Symmetrized image.
    """
    angle = float(angle) % 360

    # Data-type must be float because of use of NaN
    im = np.array(im, dtype=np.float, copy=True)
    # sort axis to have image plane "in front"
    im = im.swapaxes(0, img_plane[0]).swapaxes(1, img_plane[1])
    reflected = np.array(im, copy=True)  # reflected image

    if mask is not None:
        invalid_pixels = np.logical_not(mask)
        im[invalid_pixels] = np.nan
        reflected[invalid_pixels] = np.nan

    kwargs = {
        "center": center,
        "mode": "constant",
        "cval": 0,
        "preserve_range": True
    }

    # Rotate the 'reflected' image so that the reflection line is the x-axis
    # Flip the image along the y-axis
    # Rotate back to original orientation
    # FIXME: this will not work properly for images that are offcenter
    # print(type(reflected))

    reflected = skrotate(reflected, -angle, **kwargs)
    reflected = mirror(reflected, axes=0)
    reflected = skrotate(reflected, angle, **kwargs)

    out = nan_to_num(average([im, reflected]), fill_value, copy=False)
    out = out.swapaxes(img_plane[1], 1).swapaxes(img_plane[0], 0)
    return out