def cell_pearsons_test(self, imagemanager, cellmanager):
        """Placeholder"""

        pcc_scores = {}

        for key in cellmanager.cells.keys():
            cell = cellmanager.cells[key]
            x0, y0, x1, y1 = cell.box

            channel_1_cell = imagemanager.channel_1_image[x0:x1 + 1, y0:y1 + 1]
            channel_2_cell = imagemanager.channel_2_image[x0:x1 + 1, y0:y1 + 1]

            c1_overlay = mark_boundaries(img_as_int(channel_1_cell),
                                         img_as_int(cell.cell_mask),
                                         color=(1, 0, 1),
                                         outline_color=None)
            c2_overlay = mark_boundaries(img_as_int(channel_2_cell),
                                         img_as_int(cell.cell_mask),
                                         color=(1, 0, 1),
                                         outline_color=None)

            cell.cell_image = np.concatenate((c1_overlay, c2_overlay), axis=1)

            cell.cell_image_overlays = np.concatenate((c1_overlay, c2_overlay),
                                                      axis=1)

            pcc_scores[key] = self.pearsons_score(channel_1_cell,
                                                  channel_2_cell,
                                                  cell.cell_mask)

        return pcc_scores
	def phys_dist2boundary(self):
		print("######################################")
		print("Add Physics Param: dist_to_boundary")
		print("######################################")
		phys_df = pd.read_csv(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-physData.csv')



		if osp.exists(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-dist2boundaryMask.tif'):
			dist2boundary_masks = imread(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-dist2boundaryMask.tif')
			# boundary_masks = boundary_masks // 255
		else:
			boundary_masks = imread(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-boundaryMask.tif')
			boundary_masks = boundary_masks // 255
			print("######################################")
			print("Generate dist2boundary_mask")
			print("######################################")
			dist2boundary_masks = get_dist2boundary_mask_batch(boundary_masks)
			imsave(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-dist2boundaryMask.tif',
					img_as_int(dist2boundary_masks))




		phys_df = add_dist_to_boundary_batch_2(phys_df, dist2boundary_masks)
		phys_df.round(6).to_csv(self.config.OUTPUT_PATH + self.config.ROOT_NAME + \
						'-physData.csv', index=False)
Exemplo n.º 3
0
    def set_image(self, params, images, background):
        """ creates a strip with the cell in different images
            images is a list of rgb images
            background is a grayscale image to use for the masks
        """

        x0, y0, x1, y1 = self.box
        img = color.gray2rgb(np.zeros((x1 - x0 + 1, (len(images) + 4) * (y1 - y0 + 1))))
        bx0 = 0
        bx1 = x1 - x0 + 1
        by0 = 0
        by1 = y1 - y0 + 1

        for im in images:
            img[bx0:bx1, by0:by1] = im[x0 : x1 + 1, y0 : y1 + 1]
            by0 = by0 + y1 - y0 + 1
            by1 = by1 + y1 - y0 + 1

        perim = self.perim_mask
        axial = self.sept_mask
        cyto = self.cyto_mask
        img[bx0:bx1, by0:by1] = color.gray2rgb(background[x0 : x1 + 1, y0 : y1 + 1] * self.cell_mask)
        by0 = by0 + y1 - y0 + 1
        by1 = by1 + y1 - y0 + 1
        img[bx0:bx1, by0:by1] = color.gray2rgb(background[x0 : x1 + 1, y0 : y1 + 1] * perim)
        by0 = by0 + y1 - y0 + 1
        by1 = by1 + y1 - y0 + 1
        img[bx0:bx1, by0:by1] = color.gray2rgb(background[x0 : x1 + 1, y0 : y1 + 1] * cyto)
        if params.find_septum:
            by0 = by0 + y1 - y0 + 1
            by1 = by1 + y1 - y0 + 1
            img[bx0:bx1, by0:by1] = color.gray2rgb(background[x0 : x1 + 1, y0 : y1 + 1] * axial)
        self.image = img_as_int(img)
Exemplo n.º 4
0
 def myfilter(self, data):
     if self.filter == 'sobel':
         return util.img_as_int(filters.sobel(data))
     elif self.filter == 'otsu':
         thresh = filters.threshold_otsu(data)
         return util.img_as_ubyte(data > thresh)
     elif self.filter == '阈值分割':
         thresh = self.thresholdvalue * data.max() / 100.0
         return util.img_as_ubyte(data > thresh)
     elif self.filter == 'canny edge':
         temp = util.img_as_ubyte(
             feature.canny(data, low_threshold=30, high_threshold=40))
         return temp
     elif self.filter == 'watershed':
         mask = util.img_as_ubyte(filters.gaussian_filter(data, 0.4))
         markers = feature.canny(data, low_threshold=30, high_threshold=40)
         markers = ndi.label(markers)[0]
         idata = filters.rank.gradient(data, morphology.disk(1))
         temp = morphology.watershed(data, markers, mask=mask)
         # hsv=color.convert_colorspace(temp,'L','RGB')
         # io.imshow(hsv)
         return temp
     elif self.filter == 'test':
         data = util.img_as_ubyte(filters.median(data, morphology.disk(2)))
         return data
Exemplo n.º 5
0
def preprocess(img):
    """
    Apply image processing functions to return a binary image
    """

    # Apply thresholds
    cv2.imshow('unprocessed', img)
    img = filters.threshold_local(img, 3)
    threshold = 0.3
    idx = img > img.max() * threshold
    idx2 = img < img.max() * threshold
    img[idx] = 0
    img[idx2] = 255

    # undistorting
    img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)

    # Crop the pictures as for raw images.
    img = crop(img)
    cv2.imshow('proced', img)

    struct = ndimage.generate_binary_structure(2, 3)
    # img = ndimage.binary_dilation(img, structure=struct)
    img = ndimage.binary_erosion(img, ndimage.generate_binary_structure(2, 9))
    img = ndimage.binary_dilation(img, structure=struct)

    # cv2.imshow('proced', util.img_as_int(img))

    return util.img_as_int(img)
Exemplo n.º 6
0
    def generate_report(self,
                        image_manager,
                        cells_manager,
                        fret_manager,
                        path=None):

        if path is None:
            path = tkFileDialog.askdirectory()

        path = path + os.sep + "Report Experiment"
        if not os.path.exists(path + os.sep + "_fret_images"):
            os.makedirs(path + os.sep + "_fret_images")
        if not os.path.exists(path + os.sep + "_donor_images"):
            os.makedirs(path + os.sep + "_donor_images")
        if not os.path.exists(path + os.sep + "_acceptor_images"):
            os.makedirs(path + os.sep + "_acceptor_images")
        if not os.path.exists(path + os.sep + "_control_images"):
            os.makedirs(path + os.sep + "_control_images")
        if not os.path.exists(path + os.sep + "_wt_images"):
            os.makedirs(path + os.sep + "_wt_images")
        if not os.path.exists(path + os.sep + "_discarded_images"):
            os.makedirs(path + os.sep + "_discarded_images")
        self.generate_report_experiment(image_manager, cells_manager,
                                        fret_manager, path)
        imsave(path + os.sep + "heatmap.png",
               img_as_int(fret_manager.fret_heatmap))
Exemplo n.º 7
0
def overlay_cells(cells, image, colors):
    "Overlay the edges of each individual cell in the provided image"

    tmp = color.gray2rgb(image)

    for k in cells.keys():
        c = cells[k]
        if c.selection_state == 1:
            col = colors[c.color_i][:3]

            for px in c.outline:
                x, y = px
                tmp[x, y] = col

            if c.sept_mask is not None:
                try:
                    x0, y0, x1, y1 = c.box
                    tmp[x0:x1, y0:y1] = mark_boundaries(tmp[x0:x1, y0:y1],
                                                        img_as_int(
                                                            c.sept_mask),
                                                        color=col)
                except IndexError:
                    c.selection_state = -1

    return tmp
Exemplo n.º 8
0
def overlay_cells(cells, image, colors):
    "Overlay the edges of each individual cell in the provided image"

    tmp = color.gray2rgb(image)

    for k in cells.keys():
        c = cells[k]
        if c.selection_state == 1:
            col = colors[c.color_i][:3]

            for px in c.outline:
                x, y = px
                tmp[x, y] = col

            if c.sept_mask is not None:
                try:
                    x0, y0, x1, y1 = c.box
                    tmp[x0:x1 + 1,
                        y0:y1 + 1] = mark_boundaries(tmp[x0:x1 + 1, y0:y1 + 1],
                                                     img_as_int(c.sept_mask),
                                                     color=col)
                except IndexError:
                    c.selection_state = -1

    return tmp
Exemplo n.º 9
0
def preprocess_algae(img):
    # Crop the pictures as for raw images.
   
    # Apply thresholds
    img = filters.threshold_adaptive(img,25)
    threshold = 0.3
    idx = img > img.max() * threshold
    idx2 = img < img.max() * threshold
    img[idx] = 255
    img[idx2] = 0
    return util.img_as_int(img)
Exemplo n.º 10
0
def preprocess_algae_fill(img):
    # Crop the pictures as for raw images.
   
    # Apply thresholds
    img = filters.threshold_adaptive(img,25)
    threshold = 0.3
    idx = img > img.max() * threshold
    idx2 = img < img.max() * threshold
    img[idx] = 255
    img[idx2] = 0
    img = ndimage.binary_erosion(img)
    img = ndimage.binary_closing(img)
    return util.img_as_int(img)
Exemplo n.º 11
0
    def generate_thres_mask(self):
        print("######################################")
        print("Generate thres mask")
        print("######################################")
        masks_thres = self.get_thres_mask()
        masks_thres_255 = np.rint(masks_thres / \
             masks_thres.max() * 255).astype(np.uint8)
        imsave(
            self.settings['Output path'] + self.root_name + '-thresMask.tif',
            masks_thres_255)

        print("######################################")
        print("Generate dist2thresMask")
        print("######################################")
        dist_masks = img_as_int(get_dist2boundary_mask_batch(masks_thres))
        imsave(self.settings['Output path'] + self.root_name + \
         '-dist2thresMask.tif', dist_masks)
Exemplo n.º 12
0
	def mask_boundary(self):
		print("######################################")
		print("Generate mask_boundary")
		print("######################################")
		boundary_masks = self.get_boundary_mask()
		# Save it using 255 and 0
		boundary_masks_255 = np.rint(boundary_masks / \
							boundary_masks.max() * 255).astype(np.uint8)
		imsave(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-boundaryMask.tif',
				boundary_masks_255)

		print("######################################")
		print("Generate dist2boundary_mask")
		print("######################################")
		dist2boundary_masks = img_as_int(get_dist2boundary_mask_batch(boundary_masks))
		imsave(self.config.OUTPUT_PATH + self.config.ROOT_NAME + '-dist2boundaryMask.tif',
				dist2boundary_masks)
Exemplo n.º 13
0
    def generate_blob_mask(self):
        print("######################################")
        print("Generate blob mask")
        print("######################################")
        masks_blob = self.get_blob_mask()
        masks_blob_255 = np.rint(masks_blob / \
             masks_blob.max() * 255).astype(np.uint8)
        imsave(self.settings['Output path'] + self.root_name + '-blobMask.tif',
               masks_blob_255)

        if self.settings['Generate dist2blobMask']:
            print("######################################")
            print("Generate dist2blob_mask")
            print("######################################")
            dist2blob_masks = img_as_int(
                get_dist2boundary_mask_batch(masks_blob))
            imsave(self.settings['Output path'] + self.root_name + \
             '-dist2blobMask.tif', dist2blob_masks)
Exemplo n.º 14
0
def preprocess_foam(img):
    """
    Apply image processing functions to return a binary image
    """
    # Crop the pictures as for raw images.
    img = crop(img)
    # Apply thresholds
    block_size = 5
    img = filters.threshold_local(img, block_size)
    threshold = 0.30
    idx = img > img.max() * threshold
    idx2 = img < img.max() * threshold
    img[idx] = 0
    img[idx2] = 255
    # Dilatate to get a continous network
    # of liquid films
    img = ndimage.binary_dilation(img)
    img = ndimage.binary_dilation(img)
    return util.img_as_int(img)
def preprocess_foam(img):
    """
    Apply image processing functions to return a binary image
    """
    # adapt to greyscale
    # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Apply thresholds
    img = filters.threshold_local(img, 299)
    threshold = 0.80
    idx = img > img.max() * threshold
    idx2 = img < img.max() * threshold
    img[idx] = 0
    img[idx2] = 255
    # Dilatate to get a continous network
    # of liquid films
    n_dilat = 1
    for _ in range(n_dilat):
        img = ndimage.binary_dilation(img)
    return util.img_as_int(img)
Exemplo n.º 16
0
    def set_image(self, params, images):
        """ creates a strip with the cell in different images
            images is a list of rgb images
            background is a grayscale image to use for the masks
        """

        x0, y0, x1, y1 = self.box
        img = gray2rgb(
            np.zeros((x1 - x0 + 1, (len(images) + 4) * (y1 - y0 + 1))))
        bx0 = 0
        bx1 = x1 - x0 + 1
        by0 = 0
        by1 = y1 - y0 + 1

        for im in images:
            img[bx0:bx1, by0:by1] = im[x0:x1 + 1, y0:y1 + 1]
            by0 = by0 + y1 - y0 + 1
            by1 = by1 + y1 - y0 + 1

        self.image = img_as_int(img)
Exemplo n.º 17
0
    def mask_53bp1_blob(self):
        print("######################################")
        print("Generate mask_53bp1_blob")
        print("######################################")
        masks_53bp1_blob = self.get_53bp1_blob_mask()
        # Save it using 255 and 0
        masks_53bp1_blob_255 = np.rint(masks_53bp1_blob / \
             masks_53bp1_blob.max() * 255).astype(np.uint8)
        imsave(
            self.config.OUTPUT_PATH + self.config.ROOT_NAME +
            '-53bp1BlobMask.tif', masks_53bp1_blob_255)

        print("######################################")
        print("Generate dist253bp1blob_mask")
        print("######################################")
        dist253bp1blob_masks = img_as_int(
            get_dist2boundary_mask_batch(masks_53bp1_blob))
        imsave(
            self.config.OUTPUT_PATH + self.config.ROOT_NAME +
            '-dist253bp1blobMask.tif', dist253bp1blob_masks)
Exemplo n.º 18
0
    def set_image(self, params, images, background):
        """ creates a strip with the cell in different images
            images is a list of rgb images
            background is a grayscale image to use for the masks
        """

        x0, y0, x1, y1 = self.box
        img = color.gray2rgb(
            np.zeros((x1 - x0 + 1, (len(images) + 4) * (y1 - y0 + 1))))
        bx0 = 0
        bx1 = x1 - x0 + 1
        by0 = 0
        by1 = y1 - y0 + 1

        for im in images:
            img[bx0:bx1, by0:by1] = im[x0:x1 + 1, y0:y1 + 1]
            by0 = by0 + y1 - y0 + 1
            by1 = by1 + y1 - y0 + 1

        perim = self.perim_mask
        axial = self.sept_mask
        cyto = self.cyto_mask
        img[bx0:bx1, by0:by1] = color.gray2rgb(
            background[x0:x1 + 1, y0:y1 + 1] * self.cell_mask)
        by0 = by0 + y1 - y0 + 1
        by1 = by1 + y1 - y0 + 1
        img[bx0:bx1,
            by0:by1] = color.gray2rgb(background[x0:x1 + 1, y0:y1 + 1] * perim)
        by0 = by0 + y1 - y0 + 1
        by1 = by1 + y1 - y0 + 1
        img[bx0:bx1,
            by0:by1] = color.gray2rgb(background[x0:x1 + 1, y0:y1 + 1] * cyto)
        if params.find_septum:
            by0 = by0 + y1 - y0 + 1
            by1 = by1 + y1 - y0 + 1
            img[bx0:bx1, by0:by1] = color.gray2rgb(
                background[x0:x1 + 1, y0:y1 + 1] * axial)
        self.image = img_as_int(img)
def readInImage(path):
    image = img_as_int(io.imread(path, as_grey=True))
    #image = img_as_uint(io.imread(path, as_grey=True))
    return image
    def cell_pearsons_test_percentile(self, imagemanager, cellmanager,
                                      percentile):

        pcc_scores = {}

        for key in cellmanager.cells.keys():
            cell = cellmanager.cells[key]
            x0, y0, x1, y1 = cell.box

            channel_1_cell = imagemanager.channel_1_image[x0:x1 + 1, y0:y1 + 1]
            channel_2_cell = imagemanager.channel_2_image[x0:x1 + 1, y0:y1 + 1]

            c1_overlay = mark_boundaries(img_as_int(channel_1_cell),
                                         img_as_int(cell.cell_mask),
                                         color=(1, 0, 1),
                                         outline_color=None)
            c2_overlay = mark_boundaries(img_as_int(channel_2_cell),
                                         img_as_int(cell.cell_mask),
                                         color=(1, 1, 0),
                                         outline_color=None)

            cell.cell_image = np.concatenate((c1_overlay, c2_overlay), axis=1)

            channel_1_pxs = channel_1_cell * cell.cell_mask
            channel_1_pxs = channel_1_pxs.flatten()
            channel_1_pxs = sorted(channel_1_pxs)
            channel_1_pxs = np.trim_zeros(channel_1_pxs)[::-1]
            channel_1_pxs = channel_1_pxs[:int(
                len(channel_1_pxs) * percentile)]
            channel_1_threshold = channel_1_pxs[-1]

            channel_1_mask = channel_1_threshold <= (channel_1_cell *
                                                     cell.cell_mask)

            channel_2_pxs = channel_2_cell * cell.cell_mask
            channel_2_pxs = channel_2_pxs.flatten()
            channel_2_pxs = sorted(channel_2_pxs)
            channel_2_pxs = np.trim_zeros(channel_2_pxs)[::-1]
            channel_2_pxs = channel_2_pxs[:int(
                len(channel_2_pxs) * percentile)]
            channel_2_threshold = channel_2_pxs[-1]

            channel_2_mask = channel_2_threshold <= (channel_2_cell *
                                                     cell.cell_mask)

            c1_overlay_1 = mark_boundaries(img_as_int(c1_overlay),
                                           img_as_int(channel_1_mask),
                                           color=(1, 1, 0),
                                           outline_color=None)
            c2_overlay_1 = mark_boundaries(img_as_int(c2_overlay),
                                           img_as_int(channel_1_mask),
                                           color=(1, 1, 0),
                                           outline_color=None)

            c1_overlay_2 = mark_boundaries(img_as_int(c1_overlay),
                                           img_as_int(channel_2_mask),
                                           color=(1, 1, 0),
                                           outline_color=None)
            c2_overlay_2 = mark_boundaries(img_as_int(c2_overlay),
                                           img_as_int(channel_2_mask),
                                           color=(1, 1, 0),
                                           outline_color=None)

            cell.cell_image_overlays = np.concatenate(
                (c1_overlay_1, c2_overlay_1, c1_overlay_2, c2_overlay_2),
                axis=1)

            #missing creation of mask for each channel and changes to allow the
            #computation of two pcc's

            percentile_mask = None

            pcc_scores[key] = (self.pearsons_score(channel_1_cell,
                                                   channel_2_cell,
                                                   channel_1_mask),
                               self.pearsons_score(channel_1_cell,
                                                   channel_2_cell,
                                                   channel_2_mask))

        self.cells_pcc = pcc_scores
Exemplo n.º 21
0
def haralick_features(im,
                      prop_names=None,
                      distances=[2, 4, 8],
                      angles=np.arange(8) * np.pi / 4,
                      levels=256,
                      symmetric=False,
                      normed=False):
    """Compute Haralick texture features of a grayscale image.

    Parameters
    ----------
    im : 2D np.ndarray of float or uint8.
        The input image.
    prop_names : list of strings, optional
        Texture properties of a gray level co-occurence matrix.
        By default prop_names=None, which means all properties are computed.
        Available texture properties include: 'contrast', 'dissimilarity',
        'homogeneity', 'ASM', 'energy', and 'correlation'.
    distances : array_like, optional
        List of pixel pair distance offsets, used for grey covariance matrix.
    angles : array_like, optional
        List of pixel pair angles in radians, used for grey covariance matrix.
    levels : int, optional
        The input image should contain integers in [0, levels-1],
        where levels indicate the number of grey-levels counted
        (typically 256 for an 8-bit image).
        This argument is required for 16-bit images or higher and is typically
        the maximum of the image. As the output matrix is at least
        levels x levels, it might be preferable to use binning of the
        input image rather than large values for levels.
    symmetric : bool, optional
        If True, the output matrix P[:, :, d, theta] is symmetric.
        This is accomplished by ignoring the order of value pairs,
        so both (i, j) and (j, i) are accumulated when (i, j)
        is encountered for a given offset. The default is False.
    normed : bool, optional
        If True, normalize each matrix P[:, :, d, theta] by dividing by
        the total number of accumulated co-occurrences for the given offset.
        The elements of the resulting matrix sum to 1. The default is False.

    Returns
    -------
    fs : 1D np.ndarray of float
        The feature vector.
    names : list of string
        The list of feature names.

    References
    ----------
    .. [1] The GLCM Tutorial Home Page,
           http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
    """
    if np.issubdtype(im.dtype, np.floating):
        im = img_as_int(im)

    available_prop_names = [
        'contrast', 'dissimilarity', 'homogeneity', 'ASM', 'energy',
        'correlation'
    ]
    if prop_names is None:
        prop_names = available_prop_names
    else:  # do not allow invalid input in prop_names
        prop_names = [
            prop for prop in prop_names
            if prop.lower() in map(str.lower, available_prop_names)
        ]
    glcm = greycomatrix(im,
                        distances=distances,
                        angles=angles,
                        levels=levels,
                        symmetric=symmetric,
                        normed=normed)
    fs = []
    names = []
    for prop in prop_names:
        texture_properties = greycoprops(glcm, prop)
        for dist, theta in it.product(distances, angles):
            name = 'haralick-%s-distance%d-angle%d' % (prop, dist, theta)
            names.append(name)
            fs.append(texture_properties[distances.index(dist),
                                         angles.index(theta)])

    return np.array(fs), names
def readInImage(path):
    image = img_as_int(io.imread(path, as_grey=True))
    # image = img_as_uint(io.imread(path, as_grey=True))
    return image
Exemplo n.º 23
0
def haralick_features(im, prop_names=None, distances=[2, 4, 8], angles=np.arange(8) * np.pi/4,
                      levels=256, symmetric=False, normed=False):
    """Compute Haralick texture features of a grayscale image.

    Parameters
    ----------
    im : 2D np.ndarray of float or uint8.
        The input image.
    prop_names : list of strings, optional
        Texture properties of a gray level co-occurence matrix.
        By default prop_names=None, which means all properties are computed.
        Available texture properties include: 'contrast', 'dissimilarity',
        'homogeneity', 'ASM', 'energy', and 'correlation'.
    distances : array_like, optional
        List of pixel pair distance offsets, used for grey covariance matrix.
    angles : array_like, optional
        List of pixel pair angles in radians, used for grey covariance matrix.
    levels : int, optional
        The input image should contain integers in [0, levels-1],
        where levels indicate the number of grey-levels counted
        (typically 256 for an 8-bit image).
        This argument is required for 16-bit images or higher and is typically
        the maximum of the image. As the output matrix is at least
        levels x levels, it might be preferable to use binning of the
        input image rather than large values for levels.
    symmetric : bool, optional
        If True, the output matrix P[:, :, d, theta] is symmetric.
        This is accomplished by ignoring the order of value pairs,
        so both (i, j) and (j, i) are accumulated when (i, j)
        is encountered for a given offset. The default is False.
    normed : bool, optional
        If True, normalize each matrix P[:, :, d, theta] by dividing by
        the total number of accumulated co-occurrences for the given offset.
        The elements of the resulting matrix sum to 1. The default is False.

    Returns
    -------
    fs : 1D np.ndarray of float
        The feature vector.
    names : list of string
        The list of feature names.

    References
    ----------
    .. [1] The GLCM Tutorial Home Page,
           http://www.fp.ucalgary.ca/mhallbey/tutorial.htm
    """
    if np.issubdtype(im.dtype, np.floating):
        im = img_as_int(im)

    available_prop_names = ['contrast',
                            'dissimilarity',
                            'homogeneity',
                            'ASM',
                            'energy',
                            'correlation']
    if prop_names is None:
        prop_names = available_prop_names
    else:  # do not allow invalid input in prop_names
        prop_names = [prop for prop in prop_names
                      if prop.lower() in map(str.lower, available_prop_names)]
    glcm = greycomatrix(im, distances=distances, angles=angles,
                        levels=levels, symmetric=symmetric, normed=normed)
    fs = []
    names = []
    for prop in prop_names:
        texture_properties = greycoprops(glcm, prop)
        for dist, theta in it.product(distances, angles):
            name = 'haralick-%s-distance%d-angle%d' % (prop, dist, theta)
            names.append(name)
            fs.append(texture_properties[distances.index(dist),
                                         angles.index(theta)])

    return np.array(fs), names