Exemplo n.º 1
0
def re_normalize(inp: np.ndarray,
                 low: int = 0,
                 high: int = 255
                 ):
    """Normalize the data to a certain range. Default: [0-255]"""
    inp_out = bytescale(inp, low=low, high=high)
    return inp_out
Exemplo n.º 2
0
def re_normalize(inp: np.ndarray, low: int = 0, high: int = 255):
    inp_out = bytescale(inp, low=low, high=high)
    return inp_out
print("Original Values: ", digits.target[n_samples // 2:(n_samples // 2) + 5])
plt.show()

#Install Pillow library
#from PIL
#from scipy.misc import imread , imresize, bytescale
from sklearn.externals._pilutil import imresize, imread, bytescale
img = imread("three.jpeg")
img = imresize(img, (8, 8))

classifier = svm.SVC(gamma=0.001)
classifier.fit(imageData[:], digits.target[:])

img = img.astype(digits.images.dtype)
img = bytescale(img, high=16.0, low=0)

print("img.shape : ", img.shape)
print("\n", img)

x_testData = []
for row in img:
    for col in row:
        x_testData.append(sum(col) / 3.0)
print("x_testData: \n", x_testData)
print("len(x_testData):", len(x_testData))

x_testData = [x_testData]
print("len(x_testData) : ", len(x_testData))

result = classifier.predict(x_testData)