Exemplo n.º 1
0
def run_logreg():
    # CV
    print()
    recs, precs, accs = [], [], []
    for i in range(len(cv_splits)):
        print('CV Epoch : ' + str(i + 1))
        cv_train, cv_test = train_test_split(cv_splits[i])
        cv_train_X, cv_train_Y = get_X_Y(cv_train)
        cv_test_X, cv_test_Y = get_X_Y(cv_test)
        mlr_fit = mlr.fit(cv_train_X, cv_train_Y)
        cv_pred = mlr.predict(cv_test_X)
        # The Coefficients
        print('Coefficients : \n', mlr.coef_)
        # Recall Score
        recall = r_s(cv_test_Y, cv_pred)
        print('Recall Score : \n', recall)
        # Precision Score
        precision = p_s(cv_test_Y, cv_pred)
        print('Precision Score : \n', precision)
        # Accuracy Score
        accuracy = a_s(cv_test_Y, cv_pred)
        print('Accuracy Score : \n', accuracy)
        # Conusion Matix
        print('Confusion Matrix : \n', c_m(cv_test_Y, cv_pred))
        recs.append(recall)
        precs.append(precision)
        accs.append(accuracy)
        print()
    print('Average Recall Score : %f' % np.mean(recs))
    print('Average Precision Score : %f' % np.mean(precs))
    print('Average Accuracy Score : %f' % np.mean(accs))
    print()
    # Test
    test_X, test_Y = get_X_Y(data_test)
    test_pred = mlr.predict(test_X)
    # The Coefficients
    print('Test Coefficients : \n', mlr.coef_)
    # Recall Score
    recall = r_s(test_Y, test_pred)
    print('Recall Score : \n', recall)
    # Precision Score
    precision = p_s(test_Y, test_pred)
    print('Precision Score : \n', precision)
    # Accuracy Score
    accuracy = a_s(test_Y, test_pred)
    print('Accuracy Score : \n', accuracy)
    # Conusion Matix
    print('Confusion Matrix : \n', c_m(test_Y, test_pred))
    print()
    return None
Exemplo n.º 2
0
def sgs():
    # gaussian/rbf
    print()
    tg = time.time()
    cs = [0.1, 0.5, 1.0, 2.0, 5.0]
    sigmas = [0.1, 0.5, 1.0, 2.0, 4.0]
    hyperparams = {'C': cs, 'gamma': sigmas}
    rbf_svc = SVC(kernel='rbf', C=cs, gamma=sigmas, cache_size=4096)

    rbf_svc_clf = GridSearchCV(rbf_svc, hyperparams, cv=5)
    cv_train_X, cv_train_Y = get_X_Y(data_cv)
    rbf_svc_fit = rbf_svc_clf.fit(cv_train_X, cv_train_Y)
    rbf_svc_res = rbf_svc_clf.cv_results_
    rbf_svc_params = rbf_svc_clf.best_params_
    rbf_svc_score = rbf_svc_clf.best_score_

    test_X, test_Y = get_X_Y(data_test)
    test_pred = rbf_svc_clf.predict(test_X)
    # The Coefficients
    print('Test Estimator : \n', rbf_svc_clf.best_estimator_)
    # Recall Score
    recall = r_s(test_Y, test_pred)
    print('Recall Score : \n', recall)
    # Precision Score
    precision = p_s(test_Y, test_pred)
    print('Precision Score : \n', precision)
    # Accuracy Score
    accuracy = a_s(test_Y, test_pred)
    print('Accuracy Score : \n', accuracy)
    # Conusion Matix
    print('Confusion Matrix : \n', c_m(test_Y, test_pred))
    tg = time.time() - tg
    print('Time Secs : %f' % tg)
    return None
Exemplo n.º 3
0
def sls():
    # linear
    print()
    tl = time.time()
    cs = [0.1, 0.5, 1.0, 2.0, 5.0]
    lin_svc = SVC(C=cs, kernel='linear', cache_size=4096)
    hyperparams = {'C': cs}

    lin_svc_clf = GridSearchCV(lin_svc, hyperparams, cv=5)
    cv_train_X, cv_train_Y = get_X_Y(data_cv)
    lin_svc_fit = lin_svc_clf.fit(cv_train_X, cv_train_Y)
    lin_svc_res = lin_svc_clf.cv_results_
    lin_svc_params = lin_svc_clf.best_params_
    lin_svc_score = lin_svc_clf.best_score_

    test_X, test_Y = get_X_Y(data_test)
    test_pred = lin_svc_clf.predict(test_X)
    # The Coefficients
    print('Test Estimator : \n', lin_svc_clf.best_estimator_)
    # Recall Score
    recall = r_s(test_Y, test_pred)
    print('Recall Score : \n', recall)
    # Precision Score
    precision = p_s(test_Y, test_pred)
    print('Precision Score : \n', precision)
    # Accuracy Score
    accuracy = a_s(test_Y, test_pred)
    print('Accuracy Score : \n', accuracy)
    # Conusion Matix
    print('Confusion Matrix : \n', c_m(test_Y, test_pred))
    tl = time.time() - tl
    print('Time Secs : %f' % tl)
    return None
Exemplo n.º 4
0
def _train_all(names,
               classifiers,
               X,
               y,
               X_train,
               X_test,
               y_train,
               y_test,
               stats=True,
               predict=""):
    """
    Train each of the classifiers, and either output score or the predictions
    """
    ## ignore numpy warnings
    from warnings import filterwarnings
    filterwarnings('ignore')
    ## cycle around each classifier
    classes = {1: "LIKELY", -1: "UNLIKELY"}
    score = {1: 0, -1: 0}
    trusts = {}
    predictions = {}
    for name, classifier in zip(names, classifiers):
        ## train each classifier
        classifier.fit(X_train, y_train)
        if stats == True:
            _get_statistics(name, classifier, X, y, X_test, y_test)
        if predict != "":
            ## Make prediction
            prediction = classifier.predict(predict)[0]

            ## Increment counter for relevant score
            score[prediction] += 1
            predictions.update({name: prediction})
            """
            reveal expected   true negatives, false positives,
                              false negatives, true positives
            """
            tn, fp, fn, tp = c_m(y_test, classifier.predict(X_test)).ravel()
            ## trust is the amount of time that the prediction was correct
            trust_score = tp / (tp + fp) if prediction == 1 else tn / (tn + fn)
            trust_score = round((trust_score * 100), 2)
            trusts.update({name: trust_score})
    if predict != "":
        scores = pd.DataFrame({
            'Recurrence': predictions,
            'Confidence': trusts
        })
        pred_weight = scores.Recurrence * scores.Confidence
        weights = pd.DataFrame({'Weights': pred_weight})
        scores['Recurrence'] = scores['Recurrence'].apply(lambda x: classes[x])
        print(scores)
        classification = 1 if weights.Weights.mean() > 0 else -1
        print(f"\nRecurrence judged {classes[classification]} at \
{round(abs(weights.Weights.mean()),2)} % confidence")
        print(f"Poll of classifiers results:")
        for index in score:
            print(f"{classes[index]}:  \t\t{score[index]}")
Exemplo n.º 5
0
def kp():
    # polynomial
    print()
    tp = time.time()
    recs, precs, accs = [], [], []

    alphas = [1.0]
    degs = [2.0, 3.0]  # M
    hyperparams = {'alpha': alphas, 'degree': degs}
    poly_krr = KernelRidge(kernel='poly',
                           alpha=alphas,
                           degree=degs,
                           gamma=1,
                           coef0=1)

    poly_krr_clf = GridSearchCV(poly_krr, hyperparams, cv=5)
    for batch in data_batches:
        batch_train, batch_test = train_test_split(batch)

        cv_train_X, cv_train_Y = get_X_Y(batch_train)
        poly_krr_fit = poly_krr_clf.fit(cv_train_X, cv_train_Y)
        poly_krr_res = poly_krr_clf.cv_results_
        poly_krr_params = poly_krr_clf.best_params_
        poly_krr_score = poly_krr_clf.best_score_

        test_X, test_Y = get_X_Y(batch_test)
        test_pred = poly_krr_clf.predict(test_X)
        # The Coefficients
        print('Test Estimator : \n', poly_krr_clf.best_estimator_)
        # Recall Score
        recall = r_s(test_Y, test_pred)
        print('Recall Score : \n', recall)
        # Precision Score
        precision = p_s(test_Y, test_pred)
        print('Precision Score : \n', precision)
        # Accuracy Score
        accuracy = a_s(test_Y, test_pred)
        print('Accuracy Score : \n', accuracy)
        # Conusion Matix
        print('Confusion Matrix : \n', c_m(test_Y, test_pred))
        recs.append(recall)
        precs.append(precision)
        accs.append(accuracy)
        print()
    print('Average Test Recall Score : %f' % np.mean(recs))
    print('Average Test Precision Score : %f' % np.mean(precs))
    print('Average Test Accuracy Score : %f' % np.mean(accs))

    tp = time.time() - tp
    print('Time Secs : %f' % tp)
    return None
Exemplo n.º 6
0
def kg():
    # gaussian/rbf
    print()
    tg = time.time()
    recs, precs, accs = [], [], []

    alphas = [1.0]
    sigmas = [0.1, 0.5, 1.0, 2.0, 4.0]
    hyperparams = {'alpha': alphas, 'gamma': sigmas}
    rbf_krr = KernelRidge(kernel='rbf', alpha=alphas, gamma=sigmas)

    rbf_krr_clf = GridSearchCV(rbf_krr, hyperparams, cv=5)
    for batch in data_batches:
        batch_train, batch_test = train_test_split(batch)

        cv_train_X, cv_train_Y = get_X_Y(batch_train)
        rbf_krr_fit = rbf_krr_clf.fit(cv_train_X, cv_train_Y)
        rbf_krr_res = rbf_krr_clf.cv_results_
        rbf_krr_params = rbf_krr_clf.best_params_
        rbf_krr_score = rbf_krr_clf.best_score_

        test_X, test_Y = get_X_Y(batch_test)
        test_pred = rbf_krr_clf.predict(test_X)
        # The Coefficients
        print('Test Estimator : \n', rbf_krr_clf.best_estimator_)
        # Recall Score
        recall = r_s(test_Y, test_pred)
        print('Recall Score : \n', recall)
        # Precision Score
        precision = p_s(test_Y, test_pred)
        print('Precision Score : \n', precision)
        # Accuracy Score
        accuracy = a_s(test_Y, test_pred)
        print('Accuracy Score : \n', accuracy)
        # Conusion Matix
        print('Confusion Matrix : \n', c_m(test_Y, test_pred))
        recs.append(recall)
        precs.append(precision)
        accs.append(accuracy)
        print()
    print('Average Test Recall Score : %f' % np.mean(recs))
    print('Average Test Precision Score : %f' % np.mean(precs))
    print('Average Test Accuracy Score : %f' % np.mean(accs))

    tg = time.time() - tg
    print('Time Secs : %f' % tg)
    return None
Exemplo n.º 7
0
def kl():
    # linear
    print()
    tl = time.time()
    recs, precs, accs = [], [], []

    alphas = [1.0]
    lin_krr = KernelRidge(alpha=alphas, kernel='linear')
    hyperparams = {'alpha': alphas}

    lin_krr_clf = GridSearchCV(lin_krr, hyperparams, cv=5)
    for batch in data_batches:
        batch_train, batch_test = train_test_split(batch)

        cv_train_X, cv_train_Y = get_X_Y(batch_train)
        lin_krr_fit = lin_krr_clf.fit(cv_train_X, cv_train_Y)
        lin_krr_res = lin_krr_clf.cv_results_
        lin_krr_params = lin_krr_clf.best_params_
        lin_krr_score = lin_krr_clf.best_score_

        test_X, test_Y = get_X_Y(batch_test)
        test_pred = lin_krr_clf.predict(test_X)
        # The Coefficients
        print('Test Estimator : \n', lin_krr_clf.best_estimator_)
        # Recall Score
        recall = r_s(test_Y, test_pred)
        print('Recall Score : \n', recall)
        # Precision Score
        precision = p_s(test_Y, test_pred)
        print('Precision Score : \n', precision)
        # Accuracy Score
        accuracy = a_s(test_Y, test_pred)
        print('Accuracy Score : \n', accuracy)
        # Conusion Matix
        print('Confusion Matrix : \n', c_m(test_Y, test_pred))
        recs.append(recall)
        precs.append(precision)
        accs.append(accuracy)
        print()
    print('Average Test Recall Score : %f' % np.mean(recs))
    print('Average Test Precision Score : %f' % np.mean(precs))
    print('Average Test Accuracy Score : %f' % np.mean(accs))

    tl = time.time() - tl
    print('Time Secs : %f' % tl)
    return None
Exemplo n.º 8
0
def sps():
    # polynomial
    print()
    tp = time.time()
    cs = [0.1, 0.5, 1.0, 2.0, 5.0]
    degs = [2.0, 3.0]  # M
    hyperparams = {'C': cs, 'degree': degs}
    poly_svc = SVC(kernel='poly',
                   C=cs,
                   degree=degs,
                   gamma=1,
                   coef0=1,
                   cache_size=4096)

    poly_svc_clf = GridSearchCV(poly_svc, hyperparams, cv=5)
    cv_train_X, cv_train_Y = get_X_Y(data_cv)
    poly_svc_fit = poly_svc_clf.fit(cv_train_X, cv_train_Y)
    poly_svc_res = poly_svc_clf.cv_results_
    poly_svc_params = poly_svc_clf.best_params_
    poly_svc_score = poly_svc_clf.best_score_

    test_X, test_Y = get_X_Y(data_test)
    test_pred = poly_svc_clf.predict(test_X)
    # The Coefficients
    print('Test Estimator : \n', poly_svc_clf.best_estimator_)
    # Recall Score
    recall = r_s(test_Y, test_pred)
    print('Recall Score : \n', recall)
    # Precision Score
    precision = p_s(test_Y, test_pred)
    print('Precision Score : \n', precision)
    # Accuracy Score
    accuracy = a_s(test_Y, test_pred)
    print('Accuracy Score : \n', accuracy)
    # Conusion Matix
    print('Confusion Matrix : \n', c_m(test_Y, test_pred))
    tp = time.time() - tp
    print('Time Secs : %f' % tp)
    return None
Exemplo n.º 9
0
print ('Time Taken To Test : %f Secs.' % tl)
# Round Test Predictions to Avoid Multiclass Continuous Targets Error
test_pred = np.round(test_pred)
# The Best Estimator
print ('Test Estimator : \n', lin_krr_clf.best_estimator_)
# Recall Score
recall = r_s(test_Y, test_pred, average='micro')
print ('Recall Score : \n', recall)
# Precision Score
precision = p_s(test_Y, test_pred, average='micro')
print ('Precision Score : \n', precision)
# Accuracy Score
accuracy = a_s(test_Y, test_pred)
print ('Accuracy Score : \n', accuracy)
# Confusion Matix
print('Confusion Matrix : \n', c_m(test_Y, test_pred))
print ()

# Polynomial Kernel Ridge Regression
print ()
# Functions and Parameters
alphas = [1.0]
degs = [2.0, 3.0, 4.0] # M
hyperparams = {'alpha' : alphas, 'degree' : degs}
poly_krr = KernelRidge(kernel='poly', alpha=alphas, degree=degs, gamma=1, coef0=1)
# Polynomial KRR Initializer
poly_krr_clf = GridSearchCV(poly_krr, hyperparams, cv=5)

# Train
tp = time.time()
poly_krr_fit = poly_krr_clf.fit(cv_train_X, cv_train_Y)