def plot_confusion(classifier, test_pts, test_labels):
    classes = [
        'STANDING', 'SITTING', 'LYING', 'WALKING', 'WALKING_DOWNSTAIRS',
        'WALKING_UPSTAIRS'
    ]
    cl = ['STANDING', 'SITTING', 'LYING', 'WALK', 'WALK_DOWN', 'WALK_UP']
    pred_label = classifier.predict(test_pts)
    # print(true_label)
    result = cf(test_labels, pred_label, labels=classes)
    # res_nor = np.ndarray((6, 6), dtype=float)
    # for i in range(0, 6):
    #     s = result[i].sum()
    #     for j in range(0, 6):
    #         res_nor[i][j] = float(result[i][j] / s)
    print(result)
    # print(res_nor)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(result)
    # plt.matshow(result)
    fig.colorbar(cax)
    ax.set_xticklabels([''] + cl)
    ax.set_yticklabels([''] + cl)
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.legend(loc='best')
    plt.show()
def plot_confusion(classifier, test_pts, test_labels):
    classes = ['STANDING',
               'SITTING',
               'LYING',
               'WALKING',
               'WALKING_DOWNSTAIRS',
               'WALKING_UPSTAIRS']
    cl = ['STANDING',
               'SITTING',
               'LYING',
               'WALK',
               'WALK_DOWN',
               'WALK_UP']
    pred_label = classifier.predict(test_pts)
    # print(true_label)
    result = cf(test_labels, pred_label, labels=classes)
    res_nor = np.ndarray((6, 6), dtype=float)
    # for i in range(0, 6):
    #     s = result[i].sum()
    #     for j in range(0, 6):
    #         res_nor[i][j] = float(result[i][j] / s)
    print(result)
    # print(res_nor)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(result)
    # plt.matshow(result)
    fig.colorbar(cax)
    ax.set_xticklabels([''] + cl)
    ax.set_yticklabels([''] + cl)
    plt.xlabel("Predicted Label")
    plt.ylabel("True Label")
    plt.legend(loc='best')
    plt.show()
Exemplo n.º 3
0
def print_out(name,one,two):
	plt.figure()
	df = pd.DataFrame(
		cf(one,two),
		index=labels,columns=labels)
	sns.heatmap(df,annot=True,cmap='Blues', fmt='g')
	plt.savefig(name+'.png')
Exemplo n.º 4
0
def DTtest(trainData, trainLabel, size):
    train_data, test_data, train_label, test_label = \
        train_test_split(trainData, trainLabel, test_size=size)

    dt = DecisionTreeClassifier()
    dt.fit(train_data, train_label)

    predict = dt.predict(test_data, test_label)

    # number of mix-matched label
    error = 0

    for x in range(len(predict)):
        if predict[x] != test_label[x]:
            error += 1

    # confusion matrix
    cf(test_label, predict)

    # accuracy
    print(1 - (error / len(predict)))

    return error
Exemplo n.º 5
0
def classification_report(model, testloader, device=None):
    if device is not None:
        model.to(device)
    y_true = []
    y_pred = []
    for (images, labels) in testloader:
        if device is not None:
            images = images.to(device)
            labels = labels.to(device)
        y_true.append(labels)
        y_pred.append(model(images))
    y_true = torch.cat(y_true)
    y_pred = torch.cat(y_pred)
    y_pred = y_pred.argmax(dim=1)

    return cf(y_true.cpu().numpy(), y_pred.cpu().numpy())
Exemplo n.º 6
0
def classification_report_pgd(model, testloader, device=None, pgd_params={}):
    if device is not None:
        model.to(device)
    y_true = []
    y_pred = []
    for (images, labels) in testloader:
        if device is not None:
            images = images.to(device)
            labels = labels.to(device)
        attacked_images = pgd(model,
                              nn.CrossEntropyLoss(),
                              images,
                              labels,
                              device=device,
                              **pgd_params)
        y_true.append(labels)
        y_pred.append(model(attacked_images))
    y_true = torch.cat(y_true)
    y_pred = torch.cat(y_pred)
    y_pred = y_pred.argmax(dim=1)

    return cf(y_true.cpu().numpy(), y_pred.cpu().numpy())
Exemplo n.º 7
0
#predicted values from x for possible values of y
Ynewpred = lr.predict(X)
bank[
    "Y Predicted"] = Ynewpred  # making a new column with these values in bank dataframe

YProbability = pd.DataFrame(
    lr.predict_proba(X.iloc[:, :])
)  #making a data frame from predicted values of y from using x variables
banknew = pd.concat(
    [bank, YProbability],
    axis=1)  #making new data frame with these y probability values

#forming confusion matrix
from sklearn.metrics import confusion_matrix as cf
cf1 = cf(Y, Ynewpred)  #between y original and y predicted by the model
print(cf1)
#     y       n
#y [39162   760]
#n [ 4226  1063]]
# accuracy = 39162+1063/39612+760+4226+1063 == 0.88
#(39162+1063)/(39612+760+4226+1063)

from sklearn.metrics import roc_curve as rocc
from sklearn.metrics import roc_auc_score as rocarea

fpr, tpr, thresholdasd = rocc(Y, Ynewpred)
auc = rocarea(Y, Ynewpred)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='ROC')
Exemplo n.º 8
0
    test_indices, y_test = filter_indices(test_i, labels_reduced)
    cv.append((train_indices, labels, test_indices, y_test))

y = []  # initialization of result list
confusion = np.zeros((5, 5))  # confusion matrix initialization

for train_indices, labels, test_indices, y_test in cv:

    Rferns = FernEnsemble(ps, fn, fs, dist=dist)
    Rferns.train(polsar_reduced, train_indices, labels)
    y_pred = Rferns.predict(polsar_reduced, test_indices, prediction='maximum')
    y.append(
        (y_pred, y_test)
    )  # for each cv iteration save prediction y_pred and the true labels y_test
    confusion += cf(
        y_test,
        y_pred)  # for each iteration add the results to the confusion matrix

name = str(dist) + '_ps' + str(ps) + '_fn' + str(fn) + '_fs' + str(fs)
pickle.dump(y,
            open(name + '.p',
                 "wb"))  # save the results as pickle file for later inspection

################################################################################################
####################### Visualization of Output ################################################
################################################################################################

import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from matplotlib import gridspec
Exemplo n.º 9
0
    #Dropout layer for Convergence
    X = Dropout(0.5)(X)
    #output a sigmoid to squash the matrix into output probabilities
    X = Dense(1, activation='sigmoid')(X)
    model = Model(inputs=X_input, outputs=X, name="CNN")

    return model


model = model_nn(input_shape=(64, 64, 1))

model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# Calling load_dataset to store the dataset
X_train_orig, X_test_orig, Y_train, Y_test = load_dataset()
# Normalize image vectors
X_train = X_train_orig / 255.
X_test = X_test_orig / 255.

model.fit(X_train, Y_train, epochs=15, batch_size=32)

y_pred = model.predict(X_test)
# The output of the model is array of real numbers therefore values greater than 0.5 will be evaluated as 1 otherwise 0
y_pred = (y_pred > 0.5)
# Confusion Matrix
cf(Y_test, y_pred)
# Save the model for further use
model.save('models/CNN_Model.h5', overwrite=True)
Exemplo n.º 10
0
 def confusion_matrix(self):
     assert self.y_test.shape == self.final_pred.shape
     matrix = cf(self.y_test, self.final_pred)
     print(matrix)