Exemplo n.º 1
0
def ModelLearning(X, y, max_depth=[1, 2, 3, 4], beta=0.5):
    """ Calculates the performance of several models with varying sizes of training data.
        The learning and testing scores for each model are then plotted. """

    # Create 10 cross-validation sets for training and testing
    cv = ShuffleSplit(X.shape[0], n_iter=10, test_size=0.2, random_state=0)

    # Generate the training set sizes increasing by 50
    train_sizes = np.rint(np.linspace(1, X.shape[0] * 0.8 - 1, 9)).astype(int)

    # Create the figure window
    fig = pl.figure(figsize=(10, 7))

    # Create three different models based on max_depth
    for k, depth in enumerate(max_depth):
        # Create a Decision tree regressor at max_depth = depth
        regressor = DecisionTreeClassifier(max_depth=depth)

        # Calculate the training and testing scores
        sizes, train_scores, test_scores = curves.learning_curve(
            regressor,
            X,
            y,
            cv=cv,
            train_sizes=train_sizes,
            scoring=make_scorer(fbeta_score, beta=beta))

        # Find the mean and standard deviation for smoothing
        train_std = np.std(train_scores, axis=1)
        train_mean = np.mean(train_scores, axis=1)
        test_std = np.std(test_scores, axis=1)
        test_mean = np.mean(test_scores, axis=1)

        # Subplot the learning curve
        ax = fig.add_subplot(2, 2, k + 1)
        ax.plot(sizes, train_mean, 'o-', color='r', label='Training Score')
        ax.plot(sizes, test_mean, 'o-', color='g', label='Testing Score')
        # ax.fill_between(sizes, train_mean - train_std, \
        #                 train_mean + train_std, alpha=0.15, color='r')
        # ax.fill_between(sizes, test_mean - test_std, \
        #                 test_mean + test_std, alpha=0.15, color='g')

        # Labels
        ax.set_title('max_depth = %s' % (depth))
        ax.set_xlabel('Number of Training Points')
        ax.set_ylabel('Score')
        ax.set_xlim([0, X.shape[0] * 0.8])
        ax.set_ylim([-0.05, 1.05])

    # Visual aesthetics
    ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad=0.)
    fig.suptitle('Decision Tree Regressor Learning Performances',
                 fontsize=16,
                 y=1.03)
    fig.show()
    pl.show()
Exemplo n.º 2
0
def ModelLearning(X, y):
    """ Calculates the performance of several models with varying sizes of training data.
        The learning and testing scores for each model are then plotted. """
    
    # Create 10 cross-validation sets for training and testing
    cv = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.2, random_state = 0)

    # Generate the training set sizes increasing by 50
    train_sizes = np.rint(np.linspace(1, X.shape[0]*0.8 - 1, 9)).astype(int)

    # Create the figure window
    fig = pl.figure(figsize=(10,7))

    # Create three different models based on max_depth
    for k, depth in enumerate([1,3,6,10]):
        
        # Create a Decision tree regressor at max_depth = depth
        regressor = DecisionTreeRegressor(max_depth = depth)

        # Calculate the training and testing scores
        sizes, train_scores, test_scores = curves.learning_curve(regressor, X, y, \
            cv = cv, train_sizes = train_sizes, scoring = 'r2')
        
        # Find the mean and standard deviation for smoothing
        train_std = np.std(train_scores, axis = 1)
        train_mean = np.mean(train_scores, axis = 1)
        test_std = np.std(test_scores, axis = 1)
        test_mean = np.mean(test_scores, axis = 1)

        # Subplot the learning curve 
        ax = fig.add_subplot(2, 2, k+1)
        ax.plot(sizes, train_mean, 'o-', color = 'r', label = 'Training Score')
        ax.plot(sizes, test_mean, 'o-', color = 'g', label = 'Testing Score')
        ax.fill_between(sizes, train_mean - train_std, \
            train_mean + train_std, alpha = 0.15, color = 'r')
        ax.fill_between(sizes, test_mean - test_std, \
            test_mean + test_std, alpha = 0.15, color = 'g')
        
        # Labels
        ax.set_title('max_depth = %s'%(depth))
        ax.set_xlabel('Number of Training Points')
        ax.set_ylabel('Score')
        ax.set_xlim([0, X.shape[0]*0.8])
        ax.set_ylim([-0.05, 1.05])
    
    # Visual aesthetics
    ax.legend(bbox_to_anchor=(1.05, 2.05), loc='lower left', borderaxespad = 0.)
    fig.suptitle('Decision Tree Regressor Learning Performances', fontsize = 16, y = 1.03)
    fig.tight_layout()
    fig.show()