Exemplo n.º 1
0
    def _GetPlanes(self, pdipts):
        try:
            # sklearn's KDTree is faster: use it if available
            from sklearn.neighbors import KDTree as Tree
        except:
            from scipy.spatial import cKDTree as Tree
        if self.GetNumberOfSlices() == 0:
            return []
        # Get the Points over the NumPy interface
        wpdi = dsa.WrapDataObject(pdipts)  # NumPy wrapped points
        points = np.array(
            wpdi.Points)  # New NumPy array of points so we dont destroy input
        numPoints = pdipts.GetNumberOfPoints()
        if self.__useNearestNbr:
            tree = Tree(points)
            ptsi = tree.query([points[0]], k=numPoints)[1].ravel()
        else:
            ptsi = [i for i in range(numPoints)]

        # Iterate of points in order (skips last point):
        planes = []
        for i in range(0, numPoints - 1,
                       numPoints // self.GetNumberOfSlices()):
            # get normal
            pts1 = points[ptsi[i]]
            pts2 = points[ptsi[i + 1]]
            x1, y1, z1 = pts1[0], pts1[1], pts1[2]
            x2, y2, z2 = pts2[0], pts2[1], pts2[2]
            normal = [x2 - x1, y2 - y1, z2 - z1]
            # create plane
            plane = self._GeneratePlane([x1, y1, z1], normal)
            planes.append(plane)

        return planes
def _fix_to_topography(topo_points, points_to_update, static=20.0):
    """Update the z component of points to force them to lie on a topo surface"""
    tree = Tree(topo_points)
    ind = tree.query(points_to_update, k=1)[1].ravel()
    # Now update the elevation to be on the topo surface
    # Also shift it so its always just above the surface and not in the surface
    points_to_update[:,2] = topo_points[:,2][ind] + static
    return points_to_update
Exemplo n.º 3
0
 def _query(topoPts, dataPts):
     try:
         # sklearn's KDTree is faster: use it if available
         from sklearn.neighbors import KDTree as Tree
     except:
         from scipy.spatial import cKDTree as Tree
     tree = Tree(topoPts)
     i = tree.query(dataPts)[1].ravel()
     return topoPts[i]
Exemplo n.º 4
0
 def _query(topo_points, data_points):
     """Querrys the data points for their closest point on the topography
     surface"""
     try:
         # sklearn's KDTree is faster: use it if available
         from sklearn.neighbors import KDTree as Tree
     except ImportError:
         from scipy.spatial import cKDTree as Tree
     tree = Tree(topo_points)
     i = tree.query(data_points)[1].ravel()
     return topo_points[i]
Exemplo n.º 5
0
    def _EstimateAngleAndSpacing(self, pts, sample=.5):
        """internal use only
        """
        try:
            # sklearn's KDTree is faster: use it if available
            from sklearn.neighbors import KDTree as Tree
        except:
            from scipy.spatial import cKDTree as Tree
        # Creat the indexing range for searching the points:
        num = len(pts)
        rng = np.linspace(0, num - 1, num=num, dtype=int)
        N = int(num * sample) + 1
        rng = np.random.choice(rng, N)
        angles = np.zeros(len(rng))
        tree = Tree(pts)
        distances = [[], []]

        #######################################################################
        #######################################################################
        # Find nearest point
        distall, ptsiall = tree.query(pts, k=2)
        pt1all, pt2all = pts[ptsiall[:, 0]], pts[ptsiall[:, 1]]
        #######################################################################
        idx = 0
        for i in rng:
            # OPTIMIZE
            ax, angles[idx], dist = self._ConvergeAngle(pt1all[i], pt2all[i])
            distances[ax].append(dist)
            idx += 1
        #######################################################################
        #TODO??? angles, distances = self._ConvergeAngle(pt1all, pt2all)
        #######################################################################
        #######################################################################
        dx, dy = distances[0], distances[1]
        if len(dx) == 0:
            dx = dy
        elif len(dy) == 0:
            dy = dx
        TOLERANCE = np.min(np.append(dx, dy)) / 2.0
        angle = np.average(np.unique(angles))
        dx = np.unique(np.around(dx / TOLERANCE)) * TOLERANCE
        dy = np.unique(np.around(dy / TOLERANCE)) * TOLERANCE

        # Now round to decimals
        dx = np.around(dx, self.DECIMALS)
        dy = np.around(dx, self.DECIMALS)

        # print('Recovered: ', dx, dy)
        return angle, dx[0], dy[0]
Exemplo n.º 6
0
 def _find_min_path(points):
     try:
         # sklearn's KDTree is faster: use it if available
         from sklearn.neighbors import KDTree as Tree
     except ImportError:
         from scipy.spatial import cKDTree  as Tree
     _compute_dist = lambda pt0, pt1: np.linalg.norm(pt0-pt1)
     ind, min_dist = None, np.inf
     tree = Tree(points)
     for pt in points:
         cur_ind = tree.query([pt], k=len(points))[1].ravel()
         dist = 0.
         for i in range(len(cur_ind)-1):
             dist += _compute_dist(points[cur_ind[i]], points[cur_ind[i+1]])
         if dist < min_dist:
             ind = cur_ind
             min_dist = dist
     return ind.ravel()
Exemplo n.º 7
0
def compute_D_I(A, B, k=None, r=None, parallel=True, query_radius=False):
    """Compute the distances (D) and the IDs of the neighbors (I) between
    the set of vectors A and the set of vectors B, considering just k
    neighbors or the neighbors within radius r. This computation is
    based on the use of a Tree, e.g. KDTree, BallTree.
    """
    global joblib_available
    global tree
    print("Computing the tree (size=%s)." % B.shape[0])
    t0 = time()
    tree = Tree(B)
    print("%s sec" % (time()-t0))
    print("Computing %s NN queries, each for %s neighbors." % (A.shape[0], k))
    t0 = time()
    if joblib_available and parallel:
        D, I = tree_parallel_query(tree, A, k=k, r=r, query_radius=query_radius)
    else:
        if query_radius:
            D, I = tree.query_radius(A, r=r, return_distance=True)
        else:
            D, I = tree.query(A, k=k)

    print("%s sec" % (time()-t0))
    return D, I
Exemplo n.º 8
0
    def _ConnectCells(self, pdi, pdo, logTime=False):
        """Internal helper to perfrom the connection
        """
        # NOTE: Type map is specified in vtkCellType.h
        cellType = self.__cellType
        nrNbr = self.__usenbr

        if logTime:
            startTime = datetime.now()

        # Get the Points over the NumPy interface
        wpdi = dsa.WrapDataObject(pdi)  # NumPy wrapped input
        points = np.array(
            wpdi.Points)  # New NumPy array of poins so we dont destroy input
        if self.__unique:
            # Remove repeated points
            points = np.unique(points, axis=0)

        def _makePolyCell(ptsi):
            cell = vtk.vtkPolyLine()
            cell.GetPointIds().SetNumberOfIds(len(ptsi))
            for i in ptsi:
                cell.GetPointIds().SetId(i, ptsi[i])
            return cell

        def _makeLineCell(ptsi):
            if len(ptsi) != 2:
                raise _helpers.PVGeoError(
                    '_makeLineCell() only handles two points')
            aLine = vtk.vtkLine()
            aLine.GetPointIds().SetId(0, ptsi[0])
            aLine.GetPointIds().SetId(1, ptsi[1])
            return aLine

        cells = vtk.vtkCellArray()
        numPoints = pdi.GetNumberOfPoints()
        if nrNbr:
            try:
                # sklearn's KDTree is faster: use it if available
                from sklearn.neighbors import KDTree as Tree
            except:
                from scipy.spatial import cKDTree as Tree
            # VTK_Line
            og = np.array([0.0, 0.0, 0.0]).reshape(1, -1)
            if cellType == vtk.VTK_LINE:
                tree = Tree(points)
                ind = tree.query(og, k=numPoints)[1].ravel()
                for i in range(len(ind) - 1):
                    # Get indices of k nearest points
                    ptsi = [ind[i], ind[i + 1]]
                    cell = _makeLineCell(ptsi)
                    cells.InsertNextCell(cell)
                    points = np.delete(points, 0, 0)  # Deletes first row
            # VTK_PolyLine
            elif cellType == vtk.VTK_POLY_LINE:
                tree = Tree(points)
                ptsi = tree.query(og, k=numPoints)[1].ravel()
                cell = _makePolyCell(ptsi.ravel())
                cells.InsertNextCell(cell)
            else:
                raise _helpers.PVGeoError('Cell Type %d not ye implemented.' %
                                          cellType)
        else:
            # VTK_PolyLine
            if cellType == vtk.VTK_POLY_LINE:
                ptsi = [i for i in range(numPoints)]
                cell = _makePolyCell(ptsi)
                cells.InsertNextCell(cell)
            # VTK_Line
            elif cellType == vtk.VTK_LINE:
                for i in range(0, numPoints - 1):
                    ptsi = [i, i + 1]
                    cell = _makeLineCell(ptsi)
                    cells.InsertNextCell(cell)
            else:
                raise _helpers.PVGeoError('Cell Type %d not ye implemented.' %
                                          cellType)

        if logTime:
            print((datetime.now() - startTime))
        # Now add points and cells to output
        pdo.SetPoints(pdi.GetPoints())
        pdo.SetLines(cells)
        # copy point data
        _helpers.copyArraysToPointData(pdi, pdo, 0)  # 0 is point data
        # Copy cell data if type is LINE
        if cellType == vtk.VTK_LINE:
            # Be sure to rearange for Nearest neighbor approxiamtion
            for i in range(pdi.GetCellData().GetNumberOfArrays()):
                vtkarr = pdi.GetCellData().GetArray(i)
                name = vtkarr.GetName()
                if nrNbr:
                    arr = interface.convertArray(vtkarr)
                    arr = arr[ind]
                    vtkarr = interface.convertArray(arr, name=name)
                pdo.GetCellData().AddArray(vtkarr)
        return pdo