Exemplo n.º 1
0
def test_stacking_classifier_sample_weight_fit_param():
    # check sample_weight is passed to all invocations of fit
    stacker = StackingClassifier(
        estimators=[("lr", CheckingClassifier(expected_sample_weight=True))],
        final_estimator=CheckingClassifier(expected_sample_weight=True),
    )
    stacker.fit(X_iris, y_iris, sample_weight=np.ones(X_iris.shape[0]))
Exemplo n.º 2
0
def test_checking_classifier_fit_params(iris):
    # check the error raised when the number of samples is not the one expected
    X, y = iris
    clf = CheckingClassifier(expected_fit_params=["sample_weight"])
    sample_weight = np.ones(len(X) // 2)

    with pytest.raises(AssertionError, match="Fit parameter sample_weight"):
        clf.fit(X, y, sample_weight=sample_weight)
Exemplo n.º 3
0
def test_checking_classifier_fit_params(iris):
    # check the error raised when the number of samples is not the one expected
    X, y = iris
    clf = CheckingClassifier(expected_sample_weight=True)
    sample_weight = np.ones(len(X) // 2)

    msg = f"sample_weight.shape == ({len(X) // 2},), expected ({len(X)},)!"
    with pytest.raises(ValueError) as exc:
        clf.fit(X, y, sample_weight=sample_weight)
    assert exc.value.args[0] == msg
Exemplo n.º 4
0
def test_checking_classifier_methods_to_check(iris, methods_to_check, predict_method):
    # check that methods_to_check allows to bypass checks
    X, y = iris

    clf = CheckingClassifier(
        check_X=sparse.issparse,
        methods_to_check=methods_to_check,
    )

    clf.fit(X, y)
    if predict_method in methods_to_check:
        with pytest.raises(AssertionError):
            getattr(clf, predict_method)(X)
    else:
        getattr(clf, predict_method)(X)
Exemplo n.º 5
0
def test_ecoc_delegate_sparse_base_estimator():
    # Non-regression test for
    # https://github.com/scikit-learn/scikit-learn/issues/17218
    X, y = iris.data, iris.target
    X_sp = sp.csc_matrix(X)

    # create an estimator that does not support sparse input
    base_estimator = CheckingClassifier(
        check_X=check_array,
        check_X_params={
            "ensure_2d": True,
            "accept_sparse": False
        },
    )
    ecoc = OutputCodeClassifier(base_estimator, random_state=0)

    with pytest.raises(TypeError, match="A sparse matrix was passed"):
        ecoc.fit(X_sp, y)

    ecoc.fit(X, y)
    with pytest.raises(TypeError, match="A sparse matrix was passed"):
        ecoc.predict(X_sp)

    # smoke test to check when sparse input should be supported
    ecoc = OutputCodeClassifier(LinearSVC(random_state=0))
    ecoc.fit(X_sp, y).predict(X_sp)
    assert len(ecoc.estimators_) == 4
Exemplo n.º 6
0
def test_calibration_with_sample_weight_base_estimator(sample_weight, data):
    """Tests that sample_weight is passed to the underlying base
    estimator.
    """
    X, y = data
    clf = CheckingClassifier(expected_sample_weight=True)
    pc_clf = CalibratedClassifierCV(clf)

    pc_clf.fit(X, y, sample_weight=sample_weight)
Exemplo n.º 7
0
def test_gridsearch_feature_extractor():
    X = data
    y = np.ones((X.shape[0],))  # dummy labels
    pipe = Pipeline([('FE', FeatureExtractor(sfreq=sfreq,
                                             selected_funcs=['higuchi_fd'])),
                     ('clf', CheckingClassifier(
                         check_X=lambda arr: arr.shape[1:] == (X.shape[1],)))])
    params_grid = {'FE__higuchi_fd__kmax': [5, 10]}
    gs = GridSearchCV(estimator=pipe, param_grid=params_grid, cv=3)
    gs.fit(X, y)
    assert_equal(hasattr(gs, 'cv_results_'), True)
Exemplo n.º 8
0
def test_calibration_with_fit_params_inconsistent_length(data):
    """fit_params having different length than data should raise the
    correct error message.
    """
    X, y = data
    fit_params = {"a": y[:5]}
    clf = CheckingClassifier(expected_fit_params=fit_params)
    pc_clf = CalibratedClassifierCV(clf)

    msg = (r"Found input variables with inconsistent numbers of "
           r"samples: \[" + str(N_SAMPLES) + r", 5\]")
    with pytest.raises(ValueError, match=msg):
        pc_clf.fit(X, y, **fit_params)
Exemplo n.º 9
0
def test_calibration_with_fit_params(fit_params_type, data):
    """Tests that fit_params are passed to the underlying base estimator.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/12384
    """
    X, y = data
    fit_params = {
        "a": _convert_container(y, fit_params_type),
        "b": _convert_container(y, fit_params_type),
    }

    clf = CheckingClassifier(expected_fit_params=["a", "b"])
    pc_clf = CalibratedClassifierCV(clf)

    pc_clf.fit(X, y, **fit_params)
Exemplo n.º 10
0
def test_checking_classifier_missing_fit_params(iris):
    X, y = iris
    clf = CheckingClassifier(expected_fit_params=["sample_weight"])
    with pytest.raises(AssertionError, match="Expected fit parameter"):
        clf.fit(X, y)
Exemplo n.º 11
0
def test_checking_classifier(iris, input_type):
    # Check that the CheckingClassifier outputs what we expect
    X, y = iris
    X = _convert_container(X, input_type)
    clf = CheckingClassifier()
    clf.fit(X, y)

    assert_array_equal(clf.classes_, np.unique(y))
    assert len(clf.classes_) == 3
    assert clf.n_features_in_ == 4

    y_pred = clf.predict(X)
    assert_array_equal(y_pred, np.zeros(y_pred.size, dtype=int))

    assert clf.score(X) == pytest.approx(0)
    clf.set_params(foo_param=10)
    assert clf.fit(X, y).score(X) == pytest.approx(1)

    y_proba = clf.predict_proba(X)
    assert y_proba.shape == (150, 3)
    assert_allclose(y_proba[:, 0], 1)
    assert_allclose(y_proba[:, 1:], 0)

    y_decision = clf.decision_function(X)
    assert y_decision.shape == (150, 3)
    assert_allclose(y_decision[:, 0], 1)
    assert_allclose(y_decision[:, 1:], 0)

    # check the shape in case of binary classification
    first_2_classes = np.logical_or(y == 0, y == 1)
    X = _safe_indexing(X, first_2_classes)
    y = _safe_indexing(y, first_2_classes)
    clf.fit(X, y)

    y_proba = clf.predict_proba(X)
    assert y_proba.shape == (100, 2)
    assert_allclose(y_proba[:, 0], 1)
    assert_allclose(y_proba[:, 1], 0)

    y_decision = clf.decision_function(X)
    assert y_decision.shape == (100,)
    assert_allclose(y_decision, 0)
Exemplo n.º 12
0
def test_check_X_on_predict_fail(iris, pred_func):
    X, y = iris
    clf = CheckingClassifier(check_X=_success).fit(X, y)
    clf.set_params(check_X=_fail)
    with pytest.raises(AssertionError):
        getattr(clf, pred_func)(X)
Exemplo n.º 13
0
def test_check_X_on_predict_success(iris, pred_func):
    X, y = iris
    clf = CheckingClassifier(check_X=_success).fit(X, y)
    getattr(clf, pred_func)(X)
Exemplo n.º 14
0
def test_check_on_fit_fail(iris, kwargs):
    X, y = iris
    clf = CheckingClassifier(**kwargs)
    with pytest.raises(AssertionError):
        clf.fit(X, y)
Exemplo n.º 15
0
def test_check_on_fit_success(iris, kwargs):
    X, y = iris
    CheckingClassifier(**kwargs).fit(X, y)
Exemplo n.º 16
0
def test_checking_classifier_missing_fit_params(iris):
    X, y = iris
    clf = CheckingClassifier(expected_sample_weight=True)
    err_msg = "Expected sample_weight to be passed"
    with pytest.raises(AssertionError, match=err_msg):
        clf.fit(X, y)
Exemplo n.º 17
0
def test_checking_classifier_with_params(iris):
    X, y = iris
    X_sparse = sparse.csr_matrix(X)

    def check_X_is_sparse(X):
        if not sparse.issparse(X):
            raise ValueError("X is not sparse")
        return True

    clf = CheckingClassifier(check_X=check_X_is_sparse)
    with pytest.raises(ValueError, match="X is not sparse"):
        clf.fit(X, y)
    clf.fit(X_sparse, y)

    def _check_array(X, **params):
        check_array(X, **params)
        return True

    clf = CheckingClassifier(check_X=_check_array,
                             check_X_params={"accept_sparse": False})
    clf.fit(X, y)
    with pytest.raises(TypeError, match="A sparse matrix was passed"):
        clf.fit(X_sparse, y)
Exemplo n.º 18
0
def test_checking_classifier_with_params(iris):
    X, y = iris
    X_sparse = sparse.csr_matrix(X)

    clf = CheckingClassifier(check_X=sparse.issparse)
    with pytest.raises(AssertionError):
        clf.fit(X, y)
    clf.fit(X_sparse, y)

    clf = CheckingClassifier(
        check_X=check_array, check_X_params={"accept_sparse": False}
    )
    clf.fit(X, y)
    with pytest.raises(TypeError, match="A sparse matrix was passed"):
        clf.fit(X_sparse, y)