Exemplo n.º 1
0
def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    for score in ['f1', 'roc_auc']:
        grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
        results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(results.keys())
        expected_keys = (("mean_test_score", "rank_test_score") +
                         tuple("split%d_test_score" % cv_i
                               for cv_i in range(n_splits)))
        assert_true(all(in1d(expected_keys, result_keys)))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                list(grid_search.cv_results_['split%d_test_score' %
                                             s][candidate_i]
                     for s in range(n_splits)))
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])
Exemplo n.º 2
0
def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    for score in ['f1', 'roc_auc']:
        grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
        results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(results.keys())
        expected_keys = (("mean_test_score", "rank_test_score") +
                         tuple("split%d_test_score" % cv_i
                               for cv_i in range(n_splits)))
        assert_true(all(in1d(expected_keys, result_keys)))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                list(grid_search.cv_results_['split%d_test_score'
                                             % s][candidate_i]
                     for s in range(n_splits)))
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])
Exemplo n.º 3
0
def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    for score in ['f1', 'roc_auc']:
        # XXX: It seems there's some global shared state in LinearSVC - fitting
        # multiple `SVC` instances in parallel using threads sometimes results
        # in wrong results. This only happens with threads, not processes/sync.
        # For now, we'll fit using the sync scheduler.
        grid_search = dcv.GridSearchCV(clf, {'C': Cs},
                                       scoring=score,
                                       cv=n_splits,
                                       scheduler='sync')
        cv_results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(cv_results.keys())
        expected_keys = (("mean_test_score", "rank_test_score") +
                         tuple("split%d_test_score" % cv_i
                               for cv_i in range(n_splits)))
        assert all(in1d(expected_keys, result_keys))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                list(grid_search.cv_results_['split%d_test_score' %
                                             s][candidate_i]
                     for s in range(n_splits)))
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])
def test_grid_search_correct_score_results():
    # test that correct scores are used
    n_splits = 3
    clf = LinearSVC(random_state=0)
    X, y = make_blobs(random_state=0, centers=2)
    Cs = [.1, 1, 10]
    for score in ['f1', 'roc_auc']:
        # XXX: It seems there's some global shared state in LinearSVC - fitting
        # multiple `SVC` instances in parallel using threads sometimes results
        # in wrong results. This only happens with threads, not processes/sync.
        # For now, we'll fit using the sync scheduler.
        grid_search = dcv.GridSearchCV(clf, {'C': Cs}, scoring=score,
                                       cv=n_splits, scheduler='sync')
        cv_results = grid_search.fit(X, y).cv_results_

        # Test scorer names
        result_keys = list(cv_results.keys())
        expected_keys = (("mean_test_score", "rank_test_score") +
                         tuple("split%d_test_score" % cv_i
                               for cv_i in range(n_splits)))
        assert all(in1d(expected_keys, result_keys))

        cv = StratifiedKFold(n_splits=n_splits)
        n_splits = grid_search.n_splits_
        for candidate_i, C in enumerate(Cs):
            clf.set_params(C=C)
            cv_scores = np.array(
                list(grid_search.cv_results_['split%d_test_score'
                                             % s][candidate_i]
                     for s in range(n_splits)))
            for i, (train, test) in enumerate(cv.split(X, y)):
                clf.fit(X[train], y[train])
                if score == "f1":
                    correct_score = f1_score(y[test], clf.predict(X[test]))
                elif score == "roc_auc":
                    dec = clf.decision_function(X[test])
                    correct_score = roc_auc_score(y[test], dec)
                assert_almost_equal(correct_score, cv_scores[i])
Exemplo n.º 5
0
    def _partial_fit(self,
                     X,
                     y,
                     classes=None,
                     _refit=False,
                     sample_weight=None):
        X, y = check_X_y(X, y)

        # If the ratio of data variance between dimensions is too small, it
        # will cause numerical errors. To address this, we artificially
        # boost the variance by epsilon, a small fraction of the standard
        # deviation of the largest dimension.
        epsilon = 1e-9 * np.var(X, axis=0).max()

        if _refit:
            self.classes_ = None

        if _check_partial_fit_first_call(self, classes):
            # This is the first call to partial_fit:
            # initialize various cumulative counters
            n_features = X.shape[1]
            n_classes = len(self.classes_)
            self.theta_ = np.zeros((n_classes, n_features))
            self.sigma_ = np.zeros((n_classes, n_features))
            self.class_prior_ = np.zeros(n_classes)
            self.class_count_ = np.zeros(n_classes)
        else:
            if X.shape[1] != self.theta_.shape[1]:
                msg = "Number of features %d does not match previous data %d."
                raise ValueError(msg % (X.shape[1], self.theta_.shape[1]))
            # Put epsilon back in each time
            self.sigma_[:, :] -= epsilon

        classes = self.classes_

        unique_y = np.unique(y)
        unique_y_in_classes = in1d(unique_y, classes)

        if not np.all(unique_y_in_classes):
            raise ValueError("The target label(s) %s in y do not exist in the "
                             "initial classes %s" %
                             (y[~unique_y_in_classes], classes))

        for y_i in unique_y:
            i = classes.searchsorted(y_i)
            X_i = X[y == y_i, :]

            if sample_weight is not None:
                sw_i = sample_weight[y == y_i]
                N_i = sw_i.sum()
            else:
                sw_i = None
                N_i = X_i.shape[0]

            new_theta, new_sigma = self._update_mean_variance(
                self.class_count_[i], self.theta_[i, :], self.sigma_[i, :],
                X_i, sw_i)

            self.theta_[i, :] = new_theta
            self.sigma_[i, :] = new_sigma
            self.class_count_[i] += N_i

        self.sigma_[:, :] += epsilon
        self.class_prior_[:] = self.class_count_ / np.sum(self.class_count_)
        #print self.class_prior_[:]
        return self
Exemplo n.º 6
0
    def _partial_fit(self,
                     X,
                     y,
                     classes=None,
                     _refit=True,
                     sample_weight=None):
        """Actual implementation of Gaussian Bayes fitting.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target values.

        classes : array-like, shape (n_classes,)
            List of all the classes that can possibly appear in the y vector.

        _refit: bool, must be True

        sample_weight : not supported

        Returns
        -------
        self : object
            Returns self.
        """
        X, y = check_X_y(X, y)

        # If the ratio of data variance between dimensions is too small, it
        # will cause numerical errors. To address this, we artificially
        # boost the variance by epsilon, a small fraction of the standard
        # deviation of the largest dimension.
        epsilon = 1e-9 * np.var(X, axis=0).max()

        if classes is None or not _refit:
            raise NotImplementedError('Partial fit is not supported.')

        self.classes_ = unique_labels(classes)

        n_features = X.shape[1]
        n_classes = len(self.classes_)
        self.theta_ = np.zeros((n_classes, n_features))
        self.sigma_ = np.zeros((n_classes, n_features, n_features))

        self.class_count_ = np.zeros(n_classes, dtype=np.float64)

        # Initialise the class prior
        n_classes = len(self.classes_)
        # Take into account the priors
        if self.priors is not None:
            priors = np.asarray(self.priors)
            # Check that the provide prior match the number of classes
            if len(priors) != n_classes:
                raise ValueError('Number of priors must match number of'
                                 ' classes.')
            # Check that the sum is 1
            if priors.sum() != 1.0:
                raise ValueError('The sum of the priors should be 1.')
            # Check that the prior are non-negative
            if (priors < 0).any():
                raise ValueError('Priors must be non-negative.')
            self.class_prior_ = priors
        else:
            # Initialize the priors to zeros for each class
            self.class_prior_ = np.zeros(len(self.classes_), dtype=np.float64)

        classes = self.classes_

        unique_y = np.unique(y)
        unique_y_in_classes = in1d(unique_y, classes)

        if not np.all(unique_y_in_classes):
            raise ValueError("The target label(s) %s in y do not exist in the "
                             "initial classes %s" %
                             (unique_y[~unique_y_in_classes], classes))

        for y_i in unique_y:
            i = classes.searchsorted(y_i)
            X_i = X[y == y_i, :]

            if sample_weight is not None:
                sw_i = sample_weight[y == y_i]
                N_i = sw_i.sum()
            else:
                sw_i = None
                N_i = X_i.shape[0]

            theta, sigma = self._update_mean_covariance(X_i)

            self.theta_[i, :] = theta
            self.sigma_[i, :, :] = sigma
            self.class_count_[i] += N_i

        self.sigma_[:, :, :] += epsilon

        # Update if only no priors is provided
        if self.priors is None:
            # Empirical prior, with sample_weight taken into account
            self.class_prior_ = self.class_count_ / self.class_count_.sum()

        return self