Exemplo n.º 1
0
 def transform(self, X, y=None):
     if X.shape[1] == 0:
         return X
     encoded = pd.get_dummies(todf(X), dummy_na=True,
                              drop_first=False, 
                              sparse=self.sparse)
     logger.debug('dummy encoded shape {}'.format(encoded.shape))
     return align_columns(encoded, self.encoded.columns)
 def _check_params(self, X):
     p = X.shape[1]
     self.k_int = ratio2int(p, self.k)
     self.donothing = (self.k_int <= 0 or self.k_int >= p)
     if self.donothing:
         self.feature_names = todf(X).columns
     else:
         self.feature_names = ['svd' + str(i) for i in range(self.k_int)]
Exemplo n.º 3
0
 def fit(self, X, y=None):
     if X.shape[1] == 0:
         self.encoded = X
         return self
     self.encoded = pd.get_dummies(todf(X), dummy_na=True,
                                   drop_first=self.drop_first, 
                                   sparse=self.sparse)            
     logger.debug('dummy encoded shape {}'.format(self.encoded.shape))
     return self
 def fit_transform(self, X, y=None):
     self._check_params(X)
     if self.donothing:
         return X
     self.svd = TruncatedSVD(n_components=self.k_int)
     return todf(self.svd.fit_transform(X))
 def transform(self, X):
     if self.donothing:
         return X
     return todf(self.svd.transform(X))