Exemplo n.º 1
0
def test_agglomerative_clustering_with_distance_threshold(linkage):
    # Check that we obtain the correct number of clusters with
    # agglomerative clustering with distance_threshold.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)
    # test when distance threshold is set to 10
    distance_threshold = 10
    for conn in [None, connectivity]:
        clustering = AgglomerativeClustering(
            n_clusters=None,
            distance_threshold=distance_threshold,
            connectivity=conn, linkage=linkage)
        clustering.fit(X)
        clusters_produced = clustering.labels_
        num_clusters_produced = len(np.unique(clustering.labels_))
        # test if the clusters produced match the point in the linkage tree
        # where the distance exceeds the threshold
        tree_builder = _TREE_BUILDERS[linkage]
        children, n_components, n_leaves, parent, distances = \
            tree_builder(X, connectivity=conn, n_clusters=None,
                         return_distance=True)
        num_clusters_at_threshold = np.count_nonzero(
            distances >= distance_threshold) + 1
        # test number of clusters produced
        assert num_clusters_at_threshold == num_clusters_produced
        # test clusters produced
        clusters_at_threshold = _hc_cut(n_clusters=num_clusters_produced,
                                        children=children,
                                        n_leaves=n_leaves)
        assert np.array_equiv(clusters_produced,
                              clusters_at_threshold)
Exemplo n.º 2
0
def test_agglomerative_clustering_with_distance_threshold_edge_case(
        linkage, threshold, y_true):
    # test boundary case of distance_threshold matching the distance
    X = [[0], [1]]
    clusterer = AgglomerativeClustering(
        n_clusters=None,
        distance_threshold=threshold,
        linkage=linkage)
    y_pred = clusterer.fit_predict(X)
    assert adjusted_rand_score(y_true, y_pred) == 1
Exemplo n.º 3
0
def test_agglomerative_clustering_wrong_arg_memory():
    # Test either if an error is raised when memory is not
    # either a str or a joblib.Memory instance
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    memory = 5
    clustering = AgglomerativeClustering(memory=memory)
    with pytest.raises(ValueError):
        clustering.fit(X)
Exemplo n.º 4
0
def test_compute_full_tree():
    # Test that the full tree is computed if n_clusters is small
    rng = np.random.RandomState(0)
    X = rng.randn(10, 2)
    connectivity = kneighbors_graph(X, 5, include_self=False)

    # When n_clusters is less, the full tree should be built
    # that is the number of merges should be n_samples - 1
    agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity)
    agc.fit(X)
    n_samples = X.shape[0]
    n_nodes = agc.children_.shape[0]
    assert n_nodes == n_samples - 1

    # When n_clusters is large, greater than max of 100 and 0.02 * n_samples.
    # we should stop when there are n_clusters.
    n_clusters = 101
    X = rng.randn(200, 2)
    connectivity = kneighbors_graph(X, 10, include_self=False)
    agc = AgglomerativeClustering(n_clusters=n_clusters,
                                  connectivity=connectivity)
    agc.fit(X)
    n_samples = X.shape[0]
    n_nodes = agc.children_.shape[0]
    assert n_nodes == n_samples - n_clusters
Exemplo n.º 5
0
def test_connectivity_propagation():
    # Check that connectivity in the ward tree is propagated correctly during
    # merging.
    X = np.array([(.014, .120), (.014, .099), (.014, .097),
                  (.017, .153), (.017, .153), (.018, .153),
                  (.018, .153), (.018, .153), (.018, .153),
                  (.018, .153), (.018, .153), (.018, .153),
                  (.018, .152), (.018, .149), (.018, .144)])
    connectivity = kneighbors_graph(X, 10, include_self=False)
    ward = AgglomerativeClustering(
        n_clusters=4, connectivity=connectivity, linkage='ward')
    # If changes are not propagated correctly, fit crashes with an
    # IndexError
    ward.fit(X)
Exemplo n.º 6
0
def test_dist_threshold_invalid_parameters():
    X = [[0], [1]]
    with pytest.raises(ValueError, match="Exactly one of "):
        AgglomerativeClustering(n_clusters=None,
                                distance_threshold=None).fit(X)

    with pytest.raises(ValueError, match="Exactly one of "):
        AgglomerativeClustering(n_clusters=2,
                                distance_threshold=1).fit(X)

    X = [[0], [1]]
    with pytest.raises(ValueError, match="compute_full_tree must be True if"):
        AgglomerativeClustering(n_clusters=None,
                                distance_threshold=1,
                                compute_full_tree=False).fit(X)
Exemplo n.º 7
0
def test_linkage_misc():
    # Misc tests on linkage
    rng = np.random.RandomState(42)
    X = rng.normal(size=(5, 5))
    with pytest.raises(ValueError):
        AgglomerativeClustering(linkage='foo').fit(X)

    with pytest.raises(ValueError):
        linkage_tree(X, linkage='foo')

    with pytest.raises(ValueError):
        linkage_tree(X, connectivity=np.ones((4, 4)))

    # Smoke test FeatureAgglomeration
    FeatureAgglomeration().fit(X)

    # test hierarchical clustering on a precomputed distances matrix
    dis = cosine_distances(X)

    res = linkage_tree(dis, affinity="precomputed")
    assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0])

    # test hierarchical clustering on a precomputed distances matrix
    res = linkage_tree(X, affinity=manhattan_distances)
    assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0])
Exemplo n.º 8
0
def test_n_clusters():
    # Test that n_clusters param works properly
    X, y = make_blobs(n_samples=100, centers=10)
    brc1 = Birch(n_clusters=10)
    brc1.fit(X)
    assert len(brc1.subcluster_centers_) > 10
    assert len(np.unique(brc1.labels_)) == 10

    # Test that n_clusters = Agglomerative Clustering gives
    # the same results.
    gc = AgglomerativeClustering(n_clusters=10)
    brc2 = Birch(n_clusters=gc)
    brc2.fit(X)
    assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
    assert_array_equal(brc1.labels_, brc2.labels_)

    # Test that the wrong global clustering step raises an Error.
    clf = ElasticNet()
    brc3 = Birch(n_clusters=clf)
    with pytest.raises(ValueError):
        brc3.fit(X)

    # Test that a small number of clusters raises a warning.
    brc4 = Birch(threshold=10000.)
    assert_warns(ConvergenceWarning, brc4.fit, X)
Exemplo n.º 9
0
def test_connectivity_ignores_diagonal():
    rng = np.random.RandomState(0)
    X = rng.rand(20, 5)
    connectivity = kneighbors_graph(X, 3, include_self=False)
    connectivity_include_self = kneighbors_graph(X, 3, include_self=True)
    aglc1 = AgglomerativeClustering(connectivity=connectivity)
    aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self)
    aglc1.fit(X)
    aglc2.fit(X)
    assert_array_equal(aglc1.labels_, aglc2.labels_)
Exemplo n.º 10
0
def test_connectivity_callable():
    rng = np.random.RandomState(0)
    X = rng.rand(20, 5)
    connectivity = kneighbors_graph(X, 3, include_self=False)
    aglc1 = AgglomerativeClustering(connectivity=connectivity)
    aglc2 = AgglomerativeClustering(
        connectivity=partial(kneighbors_graph, n_neighbors=3,
                             include_self=False))
    aglc1.fit(X)
    aglc2.fit(X)
    assert_array_equal(aglc1.labels_, aglc2.labels_)
Exemplo n.º 11
0
def test_agg_n_clusters():
    # Test that an error is raised when n_clusters <= 0

    rng = np.random.RandomState(0)
    X = rng.rand(20, 10)
    for n_clus in [-1, 0]:
        agc = AgglomerativeClustering(n_clusters=n_clus)
        msg = ("n_clusters should be an integer greater than 0."
               " %s was provided." % str(agc.n_clusters))
        assert_raise_message(ValueError, msg, agc.fit, X)
Exemplo n.º 12
0
def test_connectivity_fixing_non_lil():
    # Check non regression of a bug if a non item assignable connectivity is
    # provided with more than one component.
    # create dummy data
    x = np.array([[0, 0], [1, 1]])
    # create a mask with several components to force connectivity fixing
    m = np.array([[True, False], [False, True]])
    c = grid_to_graph(n_x=2, n_y=2, mask=m)
    w = AgglomerativeClustering(connectivity=c, linkage='ward')
    assert_warns(UserWarning, w.fit, x)
Exemplo n.º 13
0
def test_n_components_deprecation():
    # Test that a Deprecation warning is thrown when n_components_
    # attribute is accessed

    X = np.array([[1, 2], [1, 4], [1, 0], [4, 2]])
    agc = AgglomerativeClustering().fit(X)

    match = ("``n_components_`` attribute was deprecated "
             "in favor of ``n_connected_components_``")
    with pytest.warns(FutureWarning, match=match):
        n = agc.n_components_
    assert n == agc.n_connected_components_
Exemplo n.º 14
0
def test_identical_points():
    # Ensure identical points are handled correctly when using mst with
    # a sparse connectivity matrix
    X = np.array([[0, 0, 0], [0, 0, 0],
                  [1, 1, 1], [1, 1, 1],
                  [2, 2, 2], [2, 2, 2]])
    true_labels = np.array([0, 0, 1, 1, 2, 2])
    connectivity = kneighbors_graph(X, n_neighbors=3, include_self=False)
    connectivity = 0.5 * (connectivity + connectivity.T)
    connectivity, n_components = _fix_connectivity(X,
                                                   connectivity,
                                                   'euclidean')

    for linkage in ('single', 'average', 'average', 'ward'):
        clustering = AgglomerativeClustering(n_clusters=3,
                                             linkage=linkage,
                                             connectivity=connectivity)
        clustering.fit(X)

        assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
                                                         true_labels), 1)
Exemplo n.º 15
0
def test_single_linkage_clustering():
    # Check that we get the correct result in two emblematic cases
    moons, moon_labels = make_moons(noise=0.05, random_state=42)
    clustering = AgglomerativeClustering(n_clusters=2, linkage='single')
    clustering.fit(moons)
    assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
                                                     moon_labels), 1)

    circles, circle_labels = make_circles(factor=0.5, noise=0.025,
                                          random_state=42)
    clustering = AgglomerativeClustering(n_clusters=2, linkage='single')
    clustering.fit(circles)
    assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
                                                     circle_labels), 1)
Exemplo n.º 16
0
def test_small_distance_threshold():
    rng = np.random.RandomState(0)
    n_samples = 10
    X = rng.randint(-300, 300, size=(n_samples, 3))
    # this should result in all data in their own clusters, given that
    # their pairwise distances are bigger than .1 (which may not be the case
    # with a different random seed).
    clustering = AgglomerativeClustering(
        n_clusters=None,
        distance_threshold=1.,
        linkage="single").fit(X)
    # check that the pairwise distances are indeed all larger than .1
    all_distances = pairwise_distances(X, metric='minkowski', p=2)
    np.fill_diagonal(all_distances, np.inf)
    assert np.all(all_distances > .1)
    assert clustering.n_clusters_ == n_samples
Exemplo n.º 17
0
def test_cluster_distances_with_distance_threshold():
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.randint(-10, 10, size=(n_samples, 3))
    # check the distances within the clusters and with other clusters
    distance_threshold = 4
    clustering = AgglomerativeClustering(
        n_clusters=None,
        distance_threshold=distance_threshold,
        linkage="single").fit(X)
    labels = clustering.labels_
    D = pairwise_distances(X, metric="minkowski", p=2)
    # to avoid taking the 0 diagonal in min()
    np.fill_diagonal(D, np.inf)
    for label in np.unique(labels):
        in_cluster_mask = labels == label
        max_in_cluster_distance = (D[in_cluster_mask][:, in_cluster_mask]
                                   .min(axis=0).max())
        min_out_cluster_distance = (D[in_cluster_mask][:, ~in_cluster_mask]
                                    .min(axis=0).min())
        # single data point clusters only have that inf diagonal here
        if in_cluster_mask.sum() > 1:
            assert max_in_cluster_distance < distance_threshold
        assert min_out_cluster_distance >= distance_threshold
Exemplo n.º 18
0
def test_agglomerative_clustering():
    # Check that we obtain the correct number of clusters with
    # agglomerative clustering.
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    n_samples = 100
    X = rng.randn(n_samples, 50)
    connectivity = grid_to_graph(*mask.shape)
    for linkage in ("ward", "complete", "average", "single"):
        clustering = AgglomerativeClustering(n_clusters=10,
                                             connectivity=connectivity,
                                             linkage=linkage)
        clustering.fit(X)
        # test caching
        try:
            tempdir = mkdtemp()
            clustering = AgglomerativeClustering(
                n_clusters=10, connectivity=connectivity,
                memory=tempdir,
                linkage=linkage)
            clustering.fit(X)
            labels = clustering.labels_
            assert np.size(np.unique(labels)) == 10
        finally:
            shutil.rmtree(tempdir)
        # Turn caching off now
        clustering = AgglomerativeClustering(
            n_clusters=10, connectivity=connectivity, linkage=linkage)
        # Check that we obtain the same solution with early-stopping of the
        # tree building
        clustering.compute_full_tree = False
        clustering.fit(X)
        assert_almost_equal(normalized_mutual_info_score(clustering.labels_,
                                                         labels), 1)
        clustering.connectivity = None
        clustering.fit(X)
        assert np.size(np.unique(clustering.labels_)) == 10
        # Check that we raise a TypeError on dense matrices
        clustering = AgglomerativeClustering(
            n_clusters=10,
            connectivity=sparse.lil_matrix(
                connectivity.toarray()[:10, :10]),
            linkage=linkage)
        with pytest.raises(ValueError):
            clustering.fit(X)

    # Test that using ward with another metric than euclidean raises an
    # exception
    clustering = AgglomerativeClustering(
        n_clusters=10,
        connectivity=connectivity.toarray(),
        affinity="manhattan",
        linkage="ward")
    with pytest.raises(ValueError):
        clustering.fit(X)

    # Test using another metric than euclidean works with linkage complete
    for affinity in PAIRED_DISTANCES.keys():
        # Compare our (structured) implementation to scipy
        clustering = AgglomerativeClustering(
            n_clusters=10,
            connectivity=np.ones((n_samples, n_samples)),
            affinity=affinity,
            linkage="complete")
        clustering.fit(X)
        clustering2 = AgglomerativeClustering(
            n_clusters=10,
            connectivity=None,
            affinity=affinity,
            linkage="complete")
        clustering2.fit(X)
        assert_almost_equal(normalized_mutual_info_score(clustering2.labels_,
                                                         clustering.labels_),
                            1)

    # Test that using a distance matrix (affinity = 'precomputed') has same
    # results (with connectivity constraints)
    clustering = AgglomerativeClustering(n_clusters=10,
                                         connectivity=connectivity,
                                         linkage="complete")
    clustering.fit(X)
    X_dist = pairwise_distances(X)
    clustering2 = AgglomerativeClustering(n_clusters=10,
                                          connectivity=connectivity,
                                          affinity='precomputed',
                                          linkage="complete")
    clustering2.fit(X_dist)
    assert_array_equal(clustering.labels_, clustering2.labels_)