Exemplo n.º 1
0
def test_thresholded_scorers():
    # Test scorers that take thresholds.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LogisticRegression(random_state=0)
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)
    assert_almost_equal(score1, score3)

    logscore = get_scorer('neg_log_loss')(clf, X_test, y_test)
    logloss = log_loss(y_test, clf.predict_proba(X_test))
    assert_almost_equal(-logscore, logloss)

    # same for an estimator without decision_function
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])
    assert_almost_equal(score1, score2)

    # test with a regressor (no decision_function)
    reg = DecisionTreeRegressor()
    reg.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(reg, X_test, y_test)
    score2 = roc_auc_score(y_test, reg.predict(X_test))
    assert_almost_equal(score1, score2)

    # Test that an exception is raised on more than two classes
    X, y = make_blobs(random_state=0, centers=3)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf.fit(X_train, y_train)
    with pytest.raises(ValueError, match="multiclass format is not supported"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # test error is raised with a single class present in model
    # (predict_proba shape is not suitable for binary auc)
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = DecisionTreeClassifier()
    clf.fit(X_train, np.zeros_like(y_train))
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('roc_auc')(clf, X_test, y_test)

    # for proba scorers
    with pytest.raises(ValueError, match="need classifier with two classes"):
        get_scorer('neg_log_loss')(clf, X_test, y_test)
Exemplo n.º 2
0
def test_multiclass_roc_no_proba_scorer_errors(scorer_name):
    # Perceptron has no predict_proba
    scorer = get_scorer(scorer_name)
    X, y = make_classification(n_classes=3, n_informative=3, n_samples=20,
                               random_state=0)
    lr = Perceptron().fit(X, y)
    msg = "'Perceptron' object has no attribute 'predict_proba'"
    with pytest.raises(AttributeError, match=msg):
        scorer(lr, X, y)
Exemplo n.º 3
0
def test_multiclass_roc_proba_scorer(scorer_name, metric):
    scorer = get_scorer(scorer_name)
    X, y = make_classification(n_classes=3, n_informative=3, n_samples=20,
                               random_state=0)
    lr = LogisticRegression(multi_class="multinomial").fit(X, y)
    y_proba = lr.predict_proba(X)
    expected_score = metric(y, y_proba)

    assert scorer(lr, X, y) == pytest.approx(expected_score)
Exemplo n.º 4
0
def test_deprecated_scorer():
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)

    deprecated_scorer = get_scorer('brier_score_loss')
    with pytest.warns(FutureWarning):
        deprecated_scorer(clf, X_test, y_test)
Exemplo n.º 5
0
def test_supervised_cluster_scorers():
    # Test clustering scorers against gold standard labeling.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    km = KMeans(n_clusters=3)
    km.fit(X_train)
    for name in CLUSTER_SCORERS:
        score1 = get_scorer(name)(km, X_test, y_test)
        score2 = getattr(cluster_module, name)(y_test, km.predict(X_test))
        assert_almost_equal(score1, score2)
Exemplo n.º 6
0
def test_regression_scorers():
    # Test regression scorers.
    diabetes = load_diabetes()
    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = Ridge()
    clf.fit(X_train, y_train)
    score1 = get_scorer('r2')(clf, X_test, y_test)
    score2 = r2_score(y_test, clf.predict(X_test))
    assert_almost_equal(score1, score2)
Exemplo n.º 7
0
def test_classification_scores():
    # Test classification scorers.
    X, y = make_blobs(random_state=0, centers=2)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = LinearSVC(random_state=0)
    clf.fit(X_train, y_train)

    for prefix, metric in [('f1', f1_score), ('precision', precision_score),
                           ('recall', recall_score),
                           ('jaccard', jaccard_score)]:

        score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test)
        score2 = metric(y_test, clf.predict(X_test), pos_label=None,
                        average='weighted')
        assert_almost_equal(score1, score2)

        score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test)
        score2 = metric(y_test, clf.predict(X_test), pos_label=None,
                        average='macro')
        assert_almost_equal(score1, score2)

        score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test)
        score2 = metric(y_test, clf.predict(X_test), pos_label=None,
                        average='micro')
        assert_almost_equal(score1, score2)

        score1 = get_scorer('%s' % prefix)(clf, X_test, y_test)
        score2 = metric(y_test, clf.predict(X_test), pos_label=1)
        assert_almost_equal(score1, score2)

    # test fbeta score that takes an argument
    scorer = make_scorer(fbeta_score, beta=2)
    score1 = scorer(clf, X_test, y_test)
    score2 = fbeta_score(y_test, clf.predict(X_test), beta=2)
    assert_almost_equal(score1, score2)

    # test that custom scorer can be pickled
    unpickled_scorer = pickle.loads(pickle.dumps(scorer))
    score3 = unpickled_scorer(clf, X_test, y_test)
    assert_almost_equal(score1, score3)

    # smoke test the repr:
    repr(fbeta_score)
Exemplo n.º 8
0
def test_thresholded_scorers_multilabel_indicator_data():
    # Test that the scorer work with multilabel-indicator format
    # for multilabel and multi-output multi-class classifier
    X, y = make_multilabel_classification(allow_unlabeled=False,
                                          random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    # Multi-output multi-class predict_proba
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    y_proba = clf.predict_proba(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p[:, -1] for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multi-output multi-class decision_function
    # TODO Is there any yet?
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train)
    clf._predict_proba = clf.predict_proba
    clf.predict_proba = None
    clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)]

    y_proba = clf.decision_function(X_test)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, np.vstack([p for p in y_proba]).T)
    assert_almost_equal(score1, score2)

    # Multilabel predict_proba
    clf = OneVsRestClassifier(DecisionTreeClassifier())
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.predict_proba(X_test))
    assert_almost_equal(score1, score2)

    # Multilabel decision function
    clf = OneVsRestClassifier(LinearSVC(random_state=0))
    clf.fit(X_train, y_train)
    score1 = get_scorer('roc_auc')(clf, X_test, y_test)
    score2 = roc_auc_score(y_test, clf.decision_function(X_test))
    assert_almost_equal(score1, score2)
Exemplo n.º 9
0
def _test_ridge_loo(filter_):
    # test that can work with both dense or sparse matrices
    n_samples = X_diabetes.shape[0]

    ret = []

    fit_intercept = filter_ == DENSE_FILTER
    ridge_gcv = _RidgeGCV(fit_intercept=fit_intercept)

    # check best alpha
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    alpha_ = ridge_gcv.alpha_
    ret.append(alpha_)

    # check that we get same best alpha with custom loss_func
    f = ignore_warnings
    scoring = make_scorer(mean_squared_error, greater_is_better=False)
    ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv2.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with custom score_func
    func = lambda x, y: -mean_squared_error(x, y)
    scoring = make_scorer(func)
    ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring)
    f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv3.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with a scorer
    scorer = get_scorer('neg_mean_squared_error')
    ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer)
    ridge_gcv4.fit(filter_(X_diabetes), y_diabetes)
    assert ridge_gcv4.alpha_ == pytest.approx(alpha_)

    # check that we get same best alpha with sample weights
    if filter_ == DENSE_FILTER:
        ridge_gcv.fit(filter_(X_diabetes),
                      y_diabetes,
                      sample_weight=np.ones(n_samples))
        assert ridge_gcv.alpha_ == pytest.approx(alpha_)

    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T

    ridge_gcv.fit(filter_(X_diabetes), Y)
    Y_pred = ridge_gcv.predict(filter_(X_diabetes))
    ridge_gcv.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge_gcv.predict(filter_(X_diabetes))

    assert_allclose(np.vstack((y_pred, y_pred)).T, Y_pred, rtol=1e-5)

    return ret
Exemplo n.º 10
0
def test_multimetric_scorer_sanity_check():
    # scoring dictionary returned is the same as calling each scorer separately
    scorers = {'a1': 'accuracy', 'a2': 'accuracy',
               'll1': 'neg_log_loss', 'll2': 'neg_log_loss',
               'ra1': 'roc_auc', 'ra2': 'roc_auc'}

    X, y = make_classification(random_state=0)

    clf = DecisionTreeClassifier()
    clf.fit(X, y)

    scorer_dict, _ = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(**scorer_dict)

    result = multi_scorer(clf, X, y)

    separate_scores = {
        name: get_scorer(name)(clf, X, y)
        for name in ['accuracy', 'neg_log_loss', 'roc_auc']}

    for key, value in result.items():
        score_name = scorers[key]
        assert_allclose(value, separate_scores[score_name])
Exemplo n.º 11
0
def test_rfecv():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:
    assert len(rfecv.grid_scores_) == X.shape[1]
    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)

    # All the noisy variable were filtered out
    assert_array_equal(X_r, iris.data)

    # same in sparse
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Test using a customized loss function
    scoring = make_scorer(zero_one_loss, greater_is_better=False)
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scoring)
    ignore_warnings(rfecv.fit)(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test using a scorer
    scorer = get_scorer('accuracy')
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=scorer)
    rfecv.fit(X, y)
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    # Test fix on grid_scores
    def test_scorer(estimator, X, y):
        return 1.0

    rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, scoring=test_scorer)
    rfecv.fit(X, y)
    assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_)))
    # In the event of cross validation score ties, the expected behavior of
    # RFECV is to return the FEWEST features that maximize the CV score.
    # Because test_scorer always returns 1.0 in this example, RFECV should
    # reduce the dimensionality to a single feature (i.e. n_features_ = 1)
    assert rfecv.n_features_ == 1

    # Same as the first two tests, but with step=2
    rfecv = RFECV(estimator=SVC(kernel="linear"), step=2)
    rfecv.fit(X, y)
    assert len(rfecv.grid_scores_) == 6
    assert len(rfecv.ranking_) == X.shape[1]
    X_r = rfecv.transform(X)
    assert_array_equal(X_r, iris.data)

    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)

    # Verifying that steps < 1 don't blow up.
    rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=.2)
    X_sparse = sparse.csr_matrix(X)
    rfecv_sparse.fit(X_sparse, y)
    X_r_sparse = rfecv_sparse.transform(X_sparse)
    assert_array_equal(X_r_sparse.toarray(), iris.data)