Exemplo n.º 1
0
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    scaler = StandardScaler()
    km = KMeans(random_state=0)
    # As pipeline doesn't clone estimators on construction,
    # it must have its own estimators
    scaler_for_pipeline = StandardScaler()
    km_for_pipeline = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([('scaler', scaler_for_pipeline),
                     ('Kmeans', km_for_pipeline)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)
def test_partial_dependence_pipeline():
    # check that the partial dependence support pipeline
    iris = load_iris()

    scaler = StandardScaler()
    clf = DummyClassifier(random_state=42)
    pipe = make_pipeline(scaler, clf)

    clf.fit(scaler.fit_transform(iris.data), iris.target)
    pipe.fit(iris.data, iris.target)

    features = 0
    pdp_pipe, values_pipe = partial_dependence(pipe,
                                               iris.data,
                                               features=[features],
                                               grid_resolution=10)
    pdp_clf, values_clf = partial_dependence(clf,
                                             scaler.transform(iris.data),
                                             features=[features],
                                             grid_resolution=10)
    assert_allclose(pdp_pipe, pdp_clf)
    assert_allclose(
        values_pipe[0],
        values_clf[0] * scaler.scale_[features] + scaler.mean_[features])