def test_classifier_chains():
    seed = 112
    stream = MultilabelGenerator(random_state=seed, n_targets=3, n_samples=5150)
    stream.prepare_for_use()
    estimator = SGDClassifier(random_state=seed, tol=1e-3, max_iter=10)
    learner = ClassifierChain(base_estimator=estimator, random_state=seed)
    X, y = stream.next_sample(150)
    learner.partial_fit(X, y)

    cnt = 0
    max_samples = 5000
    predictions = []
    true_labels = []
    wait_samples = 100
    correct_predictions = 0

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            true_labels.append(y[0])
            if np.array_equal(y[0], predictions[-1]):
                correct_predictions += 1

        learner.partial_fit(X, y)
        cnt += 1

    if not sklearn_version.startswith("0.21"):
        expected_predictions = [[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 1.0], [1.0, 0.0, 1.0],
                                [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [1.0, 1.0, 1.0], [1.0, 0.0, 1.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0],
                                [1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0],
                                [0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0],
                                [0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]
        assert np.alltrue(np.array_equal(predictions, expected_predictions))

        expected_correct_predictions = 21
        assert correct_predictions == expected_correct_predictions

        expected_info = "ClassifierChain(base_estimator=SGDClassifier(alpha=0.0001, average=False, class_weight=None,\n" \
                        "       early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,\n" \
                        "       l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=10,\n" \
                        "       n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='l2',\n" \
                        "       power_t=0.5, random_state=112, shuffle=True, tol=0.001,\n" \
                        "       validation_fraction=0.1, verbose=0, warm_start=False),\n" \
                        "                order=None, random_state=112)"
        assert learner.get_info() == expected_info

    else:
        expected_predictions = [[0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0],
                                [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 0.0],
                                [0.0, 1.0, 1.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0],
                                [0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0]]
        assert np.alltrue(np.array_equal(predictions, expected_predictions))

        expected_correct_predictions = 26
        assert correct_predictions == expected_correct_predictions

        expected_info = "ClassifierChain(base_estimator=SGDClassifier(alpha=0.0001, average=False, class_weight=None,\n" \
                        "              early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,\n" \
                        "              l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=10,\n" \
                        "              n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5,\n" \
                        "              random_state=112, shuffle=True, tol=0.001,\n" \
                        "              validation_fraction=0.1, verbose=0, warm_start=False),\n" \
                        "                order=None, random_state=112)"
        assert learner.get_info() == expected_info

    assert type(learner.predict(X)) == np.ndarray
def test_classifier_chains():
    seed = 112
    stream = MultilabelGenerator(random_state=seed,
                                 n_targets=3,
                                 n_samples=5150)

    estimator = SGDClassifier(random_state=seed, max_iter=10)
    learner = ClassifierChain(base_estimator=estimator, random_state=seed)
    X, y = get_next_n_samples(stream, 150)
    learner.partial_fit(X, y)

    cnt = 0
    max_samples = 5000
    predictions = []
    true_labels = []
    wait_samples = 100
    correct_predictions = 0

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            true_labels.append(y[0])
            if np.array_equal(y[0], predictions[-1]):
                correct_predictions += 1

        learner.partial_fit(X, y)
        cnt += 1

    if not sklearn_version.startswith("0.21"):
        expected_predictions = [[0., 0., 1.], [0., 0., 0.], [1., 0., 1.],
                                [1., 0., 1.], [0., 0., 1.], [1., 0., 0.],
                                [1., 0., 1.], [1., 0., 1.], [0., 0., 1.],
                                [0., 0., 0.], [1., 0., 1.], [0., 0., 1.],
                                [0., 0., 1.], [0., 0., 1.], [0., 0., 1.],
                                [0., 0., 1.], [1., 0., 1.], [0., 0., 0.],
                                [1., 0., 1.], [0., 0., 0.], [0., 1., 1.],
                                [0., 1., 1.], [0., 0., 1.], [0., 1., 1.],
                                [0., 1., 1.], [0., 1., 1.], [0., 1., 0.],
                                [0., 1., 0.], [1., 1., 1.], [0., 1., 0.],
                                [0., 1., 1.], [1., 0., 1.], [0., 1., 1.],
                                [0., 0., 0.], [0., 0., 0.], [1., 0., 0.],
                                [1., 1., 1.], [0., 1., 1.], [0., 0., 0.],
                                [1., 0., 1.], [0., 0., 1.], [0., 0., 0.],
                                [0., 0., 0.], [0., 0., 1.], [0., 1., 0.],
                                [0., 0., 0.], [1., 1., 1.], [0., 0., 0.],
                                [1., 1., 1.]]
        assert np.alltrue(np.array_equal(predictions, expected_predictions))

        expected_correct_predictions = 26
        assert correct_predictions == expected_correct_predictions

        expected_info = "ClassifierChain(base_estimator=SGDClassifier(max_iter=10, " \
                        "random_state=112), order=None, random_state=112)"
        info = " ".join([line.strip() for line in learner.get_info().split()])
        assert info == expected_info

    else:
        expected_predictions = [[0.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 1.0], [1.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [1.0, 0.0, 0.0],
                                [1.0, 0.0, 1.0], [1.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 1.0],
                                [1.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 1.0, 1.0], [0.0, 1.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 1.0, 1.0],
                                [0.0, 1.0, 1.0], [0.0, 1.0, 1.0],
                                [0.0, 1.0, 0.0], [0.0, 1.0, 0.0],
                                [1.0, 1.0, 1.0], [0.0, 1.0, 0.0],
                                [0.0, 1.0, 1.0], [1.0, 0.0, 1.0],
                                [0.0, 1.0, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0], [1.0, 0.0, 0.0],
                                [1.0, 1.0, 1.0], [0.0, 1.0, 1.0],
                                [0.0, 0.0, 0.0], [1.0, 0.0, 1.0],
                                [0.0, 0.0, 1.0], [0.0, 0.0, 0.0],
                                [0.0, 0.0, 0.0], [0.0, 0.0, 1.0],
                                [0.0, 1.0, 0.0], [0.0, 0.0, 0.0],
                                [1.0, 1.0, 1.0], [0.0, 0.0, 0.0],
                                [1.0, 1.0, 1.0]]
        assert np.alltrue(np.array_equal(predictions, expected_predictions))

        expected_correct_predictions = 26
        assert correct_predictions == expected_correct_predictions

        expected_info = "ClassifierChain(base_estimator=SGDClassifier(max_iter=10, " \
                        "random_state=112), order=None, random_state=112)"
        info = " ".join([line.strip() for line in learner.get_info().split()])
        assert info == expected_info

    assert type(learner.predict(X)) == np.ndarray