Exemplo n.º 1
0
    def __init__(self,
                 algorithm: BaseRanking,
                 n_jobs: Optional[int] = None,
                 verbose: bool = False):
        super(RankClassifier, self).__init__()
        VerboseMixin.__init__(self, verbose)

        self.algorithm = algorithm
        self.n_jobs = check_n_jobs(n_jobs)
        self.verbose = verbose
Exemplo n.º 2
0
    def __init__(self, embedding_method: BaseEmbedding = GSVD(10), n_neighbors: int = 5,
                 factor_distance: float = 2, leaf_size: int = 16, p: float = 2, tol_nn: float = 0.01,
                 n_jobs: Optional[int] = None):
        super(KNN, self).__init__()

        self.embedding_method = embedding_method
        self.n_neighbors = n_neighbors
        self.factor_distance = factor_distance
        self.leaf_size = leaf_size
        self.p = p
        self.tol_nn = tol_nn
        self.n_jobs = check_n_jobs(n_jobs)
        if self.n_jobs is None:
            self.n_jobs = -1
        self.bipartite = None
Exemplo n.º 3
0
def distance(adjacency: sparse.csr_matrix,
             sources: Optional[Union[int, Iterable]] = None,
             method: str = 'D',
             return_predecessors: bool = False,
             unweighted: bool = False,
             n_jobs: Optional[int] = None):
    """Compute distances between nodes.

    * Graphs
    * Digraphs

    Based on SciPy (scipy.sparse.csgraph.shortest_path)

    Parameters
    ----------
    adjacency :
        The adjacency matrix of the graph
    sources :
        If specified, only compute the paths for the points at the given indices. Will not work with ``method =='FW'``.
    method :
        The method to be used.

        * ``'D'`` (Dijkstra),
        * ``'BF'`` (Bellman-Ford),
        * ``'J'`` (Johnson).
    return_predecessors :
        If ``True``, the size predecessor matrix is returned
    unweighted :
        If ``True``, the weights of the edges are ignored
    n_jobs :
        If an integer value is given, denotes the number of workers to use (-1 means the maximum number will be used).
        If ``None``, no parallel computations are made.

    Returns
    -------
    dist_matrix : np.ndarray
        The matrix of distances between graph nodes. ``dist_matrix[i,j]`` gives the shortest
        distance from point ``i`` to point ``j`` along the graph.
        If no path exists between nodes ``i`` and ``j``, then ``dist_matrix[i, j] = np.inf``.
    predecessors : np.ndarray, optional
        Returned only if ``return_predecessors == True``. The matrix of predecessors, which can be used to reconstruct
        the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point ``i``:
        each entry ``predecessors[i, j]`` gives the index of the previous node in the path from point ``i`` to point
        ``j``. If no path exists between nodes ``i`` and ``j``, then ``predecessors[i, j] = -9999``.

    Examples
    --------
    >>> from sknetwork.data import cyclic_digraph
    >>> adjacency = cyclic_digraph(3)
    >>> distance(adjacency, sources=0)
    array([0., 1., 2.])
    >>> distance(adjacency, sources=0, return_predecessors=True)
    (array([0., 1., 2.]), array([-9999,     0,     1]))
    """
    n_jobs = check_n_jobs(n_jobs)
    if method == 'FW' and n_jobs != 1:
        raise ValueError(
            'The Floyd-Warshall algorithm cannot be used with parallel computations.'
        )
    if sources is None:
        sources = np.arange(adjacency.shape[0])
    elif np.issubdtype(type(sources), np.integer):
        sources = np.array([sources])
    n = len(sources)
    directed = not is_symmetric(adjacency)
    local_function = partial(sparse.csgraph.shortest_path, adjacency, method,
                             directed, return_predecessors, unweighted, False)
    if n_jobs == 1 or n == 1:
        res = sparse.csgraph.shortest_path(adjacency, method, directed,
                                           return_predecessors, unweighted,
                                           False, sources)
    else:
        with Pool(n_jobs) as pool:
            res = np.array(pool.map(local_function, sources))
    if return_predecessors:
        if n == 1:
            return res[0].ravel(), res[1].astype(int).ravel()
        else:
            return res[0], res[1].astype(int)
    else:
        if n == 1:
            return res.ravel()
        else:
            return res
Exemplo n.º 4
0
def shortest_path(adjacency: sparse.csr_matrix,
                  method: str = 'auto',
                  directed: bool = True,
                  return_predecessors: bool = False,
                  unweighted: bool = False,
                  overwrite: bool = False,
                  indices: Optional[np.ndarray] = None,
                  n_jobs: Optional[int] = None):
    """Compute the shortest paths in the graph.

    * Graphs
    * Digraphs

    Based on SciPy (scipy.sparse.csgraph.shortest_path)

    Parameters
    ----------
    adjacency:
        The adjacency matrix of the graph
    method:
        The method to be used. Must be ``'auto'`` (default), ``'FW'`` (Floyd-Warshall), ``'D'`` (Dijkstra),
        ``'BF'`` (Bellman-Ford) or ``'J'`` (Johnson).
    directed:
        Denotes if the graph is directed
    return_predecessors:
        If ``True``, the size predecessor matrix is returned
    unweighted:
        If ``True``, the weights of the edges are ignored
    overwrite:
        If ``True`` and ``method == 'FW'``, overwrites the given adjacency
    indices:
        If specified, only compute the paths for the points at the given indices. Will not work with ``method =='FW'``.
    n_jobs:
        If an integer value is given, denotes the number of workers to use (-1 means the maximum number will be used).
        If ``None``, no parallel computations are made.

    Returns
    -------
    dist_matrix: np.ndarray
        The matrix of distances between graph nodes. ``dist_matrix[i,j]`` gives the shortest
        distance from point ``i`` to point ``j`` along the graph.
    predecessors: np.ndarray, optional
        Returned only if ``return_predecessors == True``. The matrix of predecessors, which can be used to reconstruct
        the shortest paths. Row i of the predecessor matrix contains information on the shortest paths from point ``i``:
        each entry ``predecessors[i, j]`` gives the index of the previous node in the path from point ``i`` to point
        ``j``. If no path exists between point ``i`` and ``j``, then ``predecessors[i, j] = -9999``.
    """
    n_jobs = check_n_jobs(n_jobs)
    if method == 'FW':
        raise ValueError(
            'The Floyd-Warshall algorithm cannot be used with parallel computations.'
        )
    if indices is None:
        indices = np.arange(adjacency.shape[0])
    local_function = partial(sparse.csgraph.shortest_path, adjacency, method,
                             directed, return_predecessors, unweighted,
                             overwrite)
    with Pool(n_jobs) as pool:
        res = pool.map(local_function, indices)
    if return_predecessors:
        paths = [el[0] for el in res]
        predecessors = [el[1] for el in res]
        return np.vstack(paths), np.vstack(predecessors)
    else:
        return np.vstack(res)