Exemplo n.º 1
0
def test_random_forest():
    # toy sample
    X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
    y = [-1, -1, -1, 1, 1, 1]
    T = [[-1, -1], [2, 2], [3, 2]]
    true_result = [-1, 1, 1]

    clf = RandomForestRegressor(n_estimators=10, random_state=1)
    clf.fit(X, y)

    assert_array_equal(clf.predict(T), true_result)
    assert 10 == len(clf)

    clf = RandomForestRegressor(n_estimators=10,
                                min_impurity_decrease=0.1,
                                random_state=1)
    clf.fit(X, y)

    assert_array_equal(clf.predict(T), true_result)
    assert 10 == len(clf)

    clf = RandomForestRegressor(n_estimators=10,
                                criterion="mse",
                                max_depth=None,
                                min_samples_split=2,
                                min_samples_leaf=1,
                                min_weight_fraction_leaf=0.,
                                max_features="auto",
                                max_leaf_nodes=None,
                                min_impurity_decrease=0.,
                                bootstrap=True,
                                oob_score=False,
                                n_jobs=1,
                                random_state=1,
                                verbose=0,
                                warm_start=False)
    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)
    assert 10 == len(clf)

    clf = RandomForestRegressor(n_estimators=10,
                                max_features=1,
                                random_state=1)
    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)
    assert 10 == len(clf)

    # also test apply
    leaf_indices = clf.apply(X)
    assert leaf_indices.shape == (len(X), clf.n_estimators)
Exemplo n.º 2
0
def test_min_variance():
    rng = np.random.RandomState(0)
    X = rng.normal(size=(1000, 1))
    y = np.ones(1000)
    rf = RandomForestRegressor(min_variance=0.1)
    rf.fit(X, y)
    mean, std = rf.predict(X, return_std=True)
    assert_array_almost_equal(mean, y)
    assert_array_almost_equal(std, np.sqrt(0.1 * np.ones(1000)))
Exemplo n.º 3
0
def test_min_variance():
    rng = np.random.RandomState(0)
    X = rng.normal(size=(1000, 1))
    y = np.ones(1000)
    rf = RandomForestRegressor(min_variance=0.1)
    rf.fit(X, y)
    mean, std = rf.predict(X, return_std=True)
    assert_array_almost_equal(mean, y)
    assert_array_almost_equal(std, np.sqrt(0.1*np.ones(1000)))