Exemplo n.º 1
0
def test_single_dataset_single_strategy_against_sklearn(
        dataset, cv, metric_func, estimator, results_cls, tmpdir):
    """Test against sklearn."""
    # set up orchestration
    task = TSCTask(target="class_val")

    # create strategies
    clf = make_reduction_pipeline(estimator)
    strategy = TSCStrategy(clf)

    # result backend
    if results_cls in [HDDResults]:
        # for hard drive results, create temporary directory using pytest's
        # tmpdir fixture
        tempdir = tmpdir.mkdir("results/")
        path = tempdir.dirpath()
        results = results_cls(path=path)
    elif results_cls in [RAMResults]:
        results = results_cls()
    else:
        raise ValueError()

    orchestrator = Orchestrator(datasets=[dataset],
                                tasks=[task],
                                strategies=[strategy],
                                cv=cv,
                                results=results)
    orchestrator.fit_predict(save_fitted_strategies=False)

    evaluator = Evaluator(results)

    # create metric classes for evaluation and set metric kwargs
    if metric_func in [accuracy_score]:
        kwargs = {}  # empty kwargs for simple pairwise metrics
        metric = PairwiseMetric(func=metric_func, name="metric")
    elif metric_func in [f1_score]:
        kwargs = {"average": "macro"}  # set kwargs for composite metrics
        metric = AggregateMetric(func=metric_func, name="metric", **kwargs)
    else:
        raise ValueError()

    metrics = evaluator.evaluate(metric=metric)
    actual = metrics["metric_mean"].iloc[0]

    # compare against sklearn cross_val_score
    data = dataset.load()  # load data
    X = data.loc[:, task.features]
    y = data.loc[:, task.target]
    expected = cross_val_score(clf,
                               X,
                               y,
                               scoring=make_scorer(metric_func, **kwargs),
                               cv=cv).mean()

    # compare results
    np.testing.assert_array_equal(actual, expected)
Exemplo n.º 2
0
def test_stat():
    """Test sign ranks."""
    data = load_gunpoint(split="train", return_X_y=False)
    dataset = RAMDataset(dataset=data, name="gunpoint")
    task = TSCTask(target="class_val")

    fc = ComposableTimeSeriesForestClassifier(n_estimators=1, random_state=1)
    strategy_fc = TSCStrategy(fc, name="tsf")
    pf = KNeighborsTimeSeriesClassifier()
    strategy_pf = TSCStrategy(pf, name="pf")

    # result backend
    results = RAMResults()
    orchestrator = Orchestrator(
        datasets=[dataset],
        tasks=[task],
        strategies=[strategy_pf, strategy_fc],
        cv=SingleSplit(random_state=1),
        results=results,
    )

    orchestrator.fit_predict(save_fitted_strategies=False)

    analyse = Evaluator(results)
    metric = PairwiseMetric(func=accuracy_score, name="accuracy")
    _ = analyse.evaluate(metric=metric)

    ranks = analyse.rank(ascending=True)
    pf_rank = ranks.loc[ranks.strategy == "pf",
                        "accuracy_mean_rank"].item()  # 1
    fc_rank = ranks.loc[ranks.strategy == "tsf",
                        "accuracy_mean_rank"].item()  # 2
    rank_array = [pf_rank, fc_rank]
    rank_array_test = [1, 2]
    _, sign_test_df = analyse.sign_test()

    sign_array = [
        [sign_test_df["pf"][0], sign_test_df["pf"][1]],
        [sign_test_df["tsf"][0], sign_test_df["tsf"][1]],
    ]
    sign_array_test = [[1, 1], [1, 1]]
    np.testing.assert_equal([rank_array, sign_array],
                            [rank_array_test, sign_array_test])
Exemplo n.º 3
0
def test_automated_orchestration_vs_manual(data_loader):
    """Test orchestration."""
    data = data_loader(return_X_y=False)

    dataset = RAMDataset(dataset=data, name="data")
    task = TSCTask(target="class_val")

    # create strategies
    # clf = TimeSeriesForestClassifier(n_estimators=1, random_state=1)
    clf = make_reduction_pipeline(
        RandomForestClassifier(n_estimators=2, random_state=1))
    strategy = TSCStrategy(clf)

    # result backend
    results = RAMResults()
    orchestrator = Orchestrator(
        datasets=[dataset],
        tasks=[task],
        strategies=[strategy],
        cv=SingleSplit(random_state=1),
        results=results,
    )

    orchestrator.fit_predict(save_fitted_strategies=False)
    result = next(results.load_predictions(cv_fold=0,
                                           train_or_test="test"))  # get
    # only first item of iterator
    actual = result.y_pred

    # expected output
    task = TSCTask(target="class_val")
    cv = SingleSplit(random_state=1)
    train_idx, test_idx = next(cv.split(data))
    train = data.iloc[train_idx, :]
    test = data.iloc[test_idx, :]
    strategy.fit(task, train)
    expected = strategy.predict(test)

    # compare results
    np.testing.assert_array_equal(actual, expected)
Exemplo n.º 4
0
HOME = os.path.expanduser("~")
DATA_PATH = os.path.join(HOME, "Documents/Research/data/Univariate_ts")
RESULTS_PATH = "results"

# Alternatively, we can use a helper function to create them automatically
datasets = make_datasets(path=DATA_PATH,
                         dataset_cls=UEADataset,
                         names=UNIVARIATE_DATASETS)
tasks = [TSCTask(target="target") for _ in range(len(datasets))]

results = HDDResults(path=RESULTS_PATH)

orchestrator = Orchestrator(
    datasets=datasets,
    tasks=tasks,
    strategies=STRATEGIES,
    cv=PresplitFilesCV(cv=UEAStratifiedCV(n_splits=30)),
    results=results)
orchestrator.fit_predict(save_fitted_strategies=False,
                         verbose=True,
                         overwrite_predictions=True,
                         save_timings=True)

evaluator = Evaluator(results=results)
metric = PairwiseMetric(func=accuracy_score, name="accuracy")
evaluator.evaluate(metric)
evaluator.metrics_by_strategy_dataset.to_csv(os.path.join(
    RESULTS_PATH, "accuracy.csv"),
                                             header=True)
Exemplo n.º 5
0
# define results output
results = HDDResults(path=RESULTS_PATH)
# results = RAMResults()

# run orchestrator
orchestrator = Orchestrator(datasets=datasets,
                            tasks=tasks,
                            strategies=strategies,
                            cv=PresplitFilesCV(),
                            results=results)

start = time.time()
orchestrator.fit_predict(save_fitted_strategies=False,
                         overwrite_fitted_strategies=False,
                         overwrite_predictions=True,
                         predict_on_train=False,
                         verbose=True)
elapsed = time.time() - start
print(elapsed)

# evaluate predictions
evaluator = Evaluator(results=results)
metric = PairwiseMetric(func=accuracy_score, name="accuracy")
metrics_by_strategy = evaluator.evaluate(metric=metric)

# save scores
evaluator.metrics_by_strategy_dataset.to_csv(os.path.join(
    RESULTS_PATH, "accuracy.csv"),
                                             header=True)
print(evaluator.metrics_by_strategy_dataset)