Exemplo n.º 1
0
def test_y_proba_on_gunpoint():
    X, y = load_gunpoint(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.1, random_state=42
    )
    stsf = SupervisedTimeSeriesForest(random_state=42, n_estimators=20)
    stsf.fit(X_train, y_train)
    actual = stsf.predict_proba(X_test)
    np.testing.assert_array_equal(actual, expected)
Exemplo n.º 2
0
def test_stsf_on_power_demand():
    # load power demand data
    X_train, y_train = load_italy_power_demand(split="train", return_X_y=True)
    X_test, y_test = load_italy_power_demand(split="test", return_X_y=True)
    indices = np.random.RandomState(0).permutation(100)

    # train STSF
    stsf = SupervisedTimeSeriesForest(random_state=0, n_estimators=20)
    stsf.fit(X_train, y_train)

    score = stsf.score(X_test.iloc[indices], y_test[indices])
    assert score >= 0.92
Exemplo n.º 3
0
def test_stsf_on_gunpoint():
    """Test of STSF on gun point."""
    # load gunpoint data
    X_train, y_train = load_gunpoint(split="train", return_X_y=True)
    X_test, y_test = load_gunpoint(split="test", return_X_y=True)
    indices = np.random.RandomState(0).permutation(10)

    stsf = SupervisedTimeSeriesForest(n_estimators=20, random_state=0)
    stsf.fit(X_train.iloc[indices], y_train[indices])

    # assert probabilities are the same
    probas = stsf.predict_proba(X_test.iloc[indices])
    testing.assert_array_equal(probas, stsf_gunpoint_probas)
Exemplo n.º 4
0
def test_stsf_on_unit_test_data():
    """Test of SupervisedTimeSeriesForest on unit test data."""
    # load unit test data
    X_train, y_train = load_unit_test(split="train", return_X_y=True)
    X_test, y_test = load_unit_test(split="test", return_X_y=True)
    indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False)

    # train STSF
    stsf = SupervisedTimeSeriesForest(n_estimators=10, random_state=0)
    stsf.fit(X_train, y_train)

    # assert probabilities are the same
    probas = stsf.predict_proba(X_test.iloc[indices])
    testing.assert_array_equal(probas, stsf_unit_test_probas)
    def StartTrain(self): 
        train_files = glob.glob(self.lineEdit.text() + "\\*.csv")
        test_files = glob.glob(self.lineEdit_2.text() + "\\*.csv")
        train_li = []
        for filename in train_files:                
            df = pd.read_csv(filename, index_col=None, header=None,usecols=[2])
            train_li.append(df)
        X_df = pd.concat(train_li, axis=1, ignore_index=True)
        X_df = X_df.T  

        test_li = []        
        for filename in test_files:
            df = pd.read_csv(filename, index_col=None, header=None,usecols=[2])
            test_li.append(df)
        X_df_ng = pd.concat(test_li, axis=1, ignore_index=True)
        X_df_ng = X_df_ng.T

        X_df = X_df.append(X_df_ng)           
        X_df_tab = from_2d_array_to_nested(X_df)

        Y_df_ok = np.zeros(len(test_li), dtype="int32")
        Y_df_ng = np.ones(len(train_li), dtype="int32")
        Y_df = np.concatenate([Y_df_ok, Y_df_ng], 0)
        
        X_train, X_test, y_train, y_test = train_test_split(X_df_tab, Y_df, test_size= (100 - self.horizontalSlider.value()) / 100)
        self.tableWidget.setRowCount(0)
        selectedModel = self.comboBox.currentText()
        if(selectedModel == "RandomForestClassifier"):
            classifier = make_pipeline(Tabularizer(), RandomForestClassifier())
            classifier.fit(X_train, y_train)
            self.lineEdit_5.setText(str(classifier.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(classifier.score(X_test, y_test)))          
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                classifier_preds = classifier.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(classifier_preds)])   
            
        elif(selectedModel == "RocketClassifier"):
            rocket = RocketClassifier()
            rocket.fit(X_train, y_train)
            self.lineEdit_5.setText(str(rocket.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(rocket.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                rocket_preds = rocket.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rocket_preds)]) 
        
        elif(selectedModel == "TimeSeriesForestClassifier"):
            tsf = TimeSeriesForestClassifier(n_estimators=50, random_state=47)
            tsf.fit(X_train, y_train)
            self.lineEdit_5.setText(str(tsf.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(tsf.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                tsf_preds = tsf.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(tsf_preds)]) 

        elif(selectedModel == "RandomIntervalSpectralEnsemble"):
            rise = RandomIntervalSpectralEnsemble(n_estimators=50, random_state=47)
            rise.fit(X_train, y_train)
            self.lineEdit_5.setText(str(rise.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(rise.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                rise_preds = rise.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(rise_preds)]) 

        elif(selectedModel == "SupervisedTimeSeriesForest"):
            stsf = SupervisedTimeSeriesForest(n_estimators=50, random_state=47)
            stsf.fit(X_train, y_train)
            self.lineEdit_5.setText(str(stsf.score(X_train, y_train)))  
            self.lineEdit_6.setText(str(stsf.score(X_test, y_test))) 
            for i in range(len(X_test)): 
                row = self.tableWidget.rowCount()
                self.tableWidget.setRowCount(row)                
                stsf_preds = rise.predict(X_test.iloc[i].to_frame())                
                self.addTableRow(self.tableWidget, [str(i),str(y_test[i]), str(stsf_preds)]) 
        else:
            print("None")