Exemplo n.º 1
0
def test_invalid_aggfuncs(forecasters, aggfunc):
    """Check if invalid aggregation functions return Error."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters=forecasters, aggfunc=aggfunc)
    forecaster.fit(y, fh=[1, 2])
    with pytest.raises(ValueError, match=r"not recognized"):
        forecaster.predict()
Exemplo n.º 2
0
def test_avg_mean(forecasters):
    """Assert `mean` aggfunc returns the same values as `average` with equal weights."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters)
    forecaster.fit(y, fh=[1, 2, 3])
    mean_pred = forecaster.predict()

    forecaster_1 = EnsembleForecaster(forecasters, aggfunc="mean", weights=[1, 1])
    forecaster_1.fit(y, fh=[1, 2, 3])
    avg_pred = forecaster_1.predict()

    pd.testing.assert_series_equal(mean_pred, avg_pred)
Exemplo n.º 3
0
def test_aggregation_unweighted(forecasters, aggfunc):
    """Assert aggfunc returns the correct values."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters=forecasters, aggfunc=aggfunc)
    forecaster.fit(y, fh=[1, 2, 3])
    actual_pred = forecaster.predict()

    predictions = []
    _aggfunc = VALID_AGG_FUNCS[aggfunc]["unweighted"]
    for _, forecaster in forecasters:
        f = forecaster
        f.fit(y)
        f_pred = f.predict(fh=[1, 2, 3])
        predictions.append(f_pred)
    predictions = pd.DataFrame(predictions).T
    expected_pred = predictions.apply(func=_aggfunc, axis=1)

    pd.testing.assert_series_equal(actual_pred, expected_pred)
Exemplo n.º 4
0
def run_sktimes(dept_id, store_id):
    # create timeseries for fbprophet
    ts = CreateTimeSeries(dept_id, store_id)

    # sktime ensembler
    forecaster = EnsembleForecaster([
        ('naive_ses', NaiveForecaster(sp=28, strategy="seasonal_last")),
        ('naive', NaiveForecaster(strategy="last")),
        ('theta_ses', ThetaForecaster(sp=28)), ('theta', ThetaForecaster()),
        ("exp_ses", ExponentialSmoothing(seasonal="additive", sp=28)),
        ("exp_damped",
         ExponentialSmoothing(trend='additive',
                              damped=True,
                              seasonal="additive",
                              sp=28))
    ])
    forecaster.fit(ts.y + 1)
    y_pred = forecaster.predict(np.arange(1, 29))
    return np.append(np.array([dept_id, store_id]), y_pred - 1)
Exemplo n.º 5
0
def test_aggregation_weighted(forecasters, aggfunc, weights):
    """Assert weighted aggfunc returns the correct values."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(
        forecasters=forecasters, aggfunc=aggfunc, weights=weights
    )
    forecaster.fit(y, fh=[1, 2, 3])
    actual_pred = forecaster.predict()

    predictions = []
    for _, forecaster in forecasters:
        f = forecaster
        f.fit(y)
        f_pred = f.predict(fh=[1, 2, 3])
        predictions.append(f_pred)
    predictions = pd.DataFrame(predictions).T
    _aggfunc = VALID_AGG_FUNCS[aggfunc]["weighted"]
    expected_pred = pd.Series(
        _aggfunc(predictions, axis=1, weights=np.array(weights)),
        index=predictions.index,
    )
    # expected_pred = predictions.apply(func=_aggfunc, axis=1, weights=weights)
    pd.testing.assert_series_equal(actual_pred, expected_pred)
Exemplo n.º 6
0
def test_aggregation_weighted(forecasters, aggfunc, weights):
    """Assert weighted aggfunc returns the correct values."""
    y = make_forecasting_problem()
    forecaster = EnsembleForecaster(forecasters=forecasters,
                                    aggfunc=aggfunc,
                                    weights=weights)
    forecaster.fit(y, fh=[1, 2, 3])
    actual_pred = forecaster.predict()

    predictions = []
    for _, forecaster in forecasters:
        f = forecaster
        f.fit(y)
        f_pred = f.predict(fh=[1, 2, 3])
        predictions.append(f_pred)

    predictions = pd.DataFrame(predictions)
    if aggfunc == "mean":
        func = np.average
    else:
        func = gmean
    expected_pred = predictions.apply(func=func, axis=0, weights=weights)

    pd.testing.assert_series_equal(actual_pred, expected_pred)
Exemplo n.º 7
0
def main():
    df = datasets.load_airline(
    )  #Univariate, monthly records from 1949 to 60 (144 records)
    y_train, y_test = temporal_train_test_split(
        df, test_size=36)  #36 months for testing

    forecaster = NaiveForecaster(
        strategy='seasonal_last', sp=12
    )  #model strategy: last, mean, seasonal_last. sp=12months (yearly season)
    forecaster.fit(y_train)  #fit
    fh = np.arange(1,
                   len(y_test) +
                   1)  #forecast horizon: array with the same lenght of y_test
    y_pred = forecaster.predict(fh)  #pred

    forecaster2 = AutoARIMA(sp=12, suppress_warnings=True, trace=1)
    forecaster2.fit(y_train)
    y_pred2 = forecaster2.predict(fh)

    forecaster3 = ExponentialSmoothing(trend='add',
                                       damped='True',
                                       seasonal='multiplicative',
                                       sp=12)
    forecaster3.fit(y_train)
    y_pred3 = forecaster3.predict(fh)

    forecaster4 = ThetaForecaster(sp=12)
    forecaster4.fit(y_train)
    y_pred4 = forecaster4.predict(fh)

    forecaster5 = EnsembleForecaster([
        ('NaiveForecaster', NaiveForecaster(strategy='seasonal_last', sp=12)),
        ('AutoARIMA', AutoARIMA(sp=12, suppress_warnings=True)),
        ('Exp Smoothing',
         ExponentialSmoothing(trend='add',
                              damped='True',
                              seasonal='multiplicative',
                              sp=12)), ('Theta', ThetaForecaster(sp=12))
    ])
    forecaster5.fit(y_train)
    y_pred5 = forecaster5.predict(fh)

    plot_ys(y_train,
            y_test,
            y_pred,
            y_pred2,
            y_pred3,
            y_pred4,
            y_pred5,
            labels=[
                'Train', 'Test', 'Naive Forecaster', 'AutoARIMA',
                'Exp Smoothing', 'Theta', 'Ensemble'
            ])
    plt.xlabel('Months')
    plt.ylabel('Number of flights')
    plt.title(
        'Time series of the number of international flights in function of time'
    )
    plt.show()

    print('SMAPE Error for NaiveForecaster is:',
          100 * round(smape_loss(y_test, y_pred), 3), '%')
    print('SMAPE Error for AutoARIMA is:',
          100 * round(smape_loss(y_test, y_pred2), 3), '%')
    print('SMAPE Error for Exp Smoothing is:',
          100 * round(smape_loss(y_test, y_pred3), 3), '%')
    print('SMAPE Error for Theta is:',
          100 * round(smape_loss(y_test, y_pred4), 3), '%')
    print('SMAPE Error for Ensemble is:',
          100 * round(smape_loss(y_test, y_pred5), 3), '%')