Exemplo n.º 1
0
def test_FittedParamExtractor(param_names):
    forecaster = ExponentialSmoothing()
    t = FittedParamExtractor(forecaster=forecaster, param_names=param_names)
    Xt = t.fit_transform(X_train)
    assert Xt.shape == (X_train.shape[0],
                        len(t._check_param_names(param_names)))

    # check specific value
    forecaster.fit(X_train.iloc[47, 0])
    fitted_param = forecaster.get_fitted_params()[param_names]
    assert Xt.iloc[47, 0] == fitted_param
Exemplo n.º 2
0
def test_set_params():
    params = {"trend": "additive"}

    f = ExponentialSmoothing(**params)
    f.fit(y_train, fh=1)
    expected = f.predict()

    f = ExponentialSmoothing()
    f.set_params(**params)
    f.fit(y_train, fh=1)
    y_pred = f.predict()

    assert_array_equal(y_pred, expected)
Exemplo n.º 3
0
def train_model_expSmooting(y, x, output: bool = True) -> ExponentialSmoothing:
    if output:
        logger.info("Training Exponential Smoothing model...")
        timer = Timer()
    model = ExponentialSmoothing(sp=24, seasonal='mul')

    y = pd.Series(data=np.delete(y, 0))
    x = pd.DataFrame(data=x[:-1])

    model.fit(y, x)

    if output:
        logger.info(f'Done in {timer}')
    return model
Exemplo n.º 4
0
def test_exponential_smoothing():
    """Test bug in 1876.

    https://github.com/alan-turing-institute/sktime/issues/1876#issue-1103752402.
    """
    y = load_airline()
    # Change index to 10 min interval
    freq = "10Min"
    time_range = pd.date_range(
        pd.to_datetime("2019-01-01 00:00"),
        pd.to_datetime("2019-01-01 23:55"),
        freq=freq,
    )
    # Period Index does not work
    y.index = time_range.to_period()

    forecaster = ExponentialSmoothing(trend="add",
                                      seasonal="multiplicative",
                                      sp=12)
    forecaster.fit(y, fh=[1, 2, 3, 4, 5, 6])
    y_pred = forecaster.predict()
    pd.testing.assert_index_equal(
        y_pred.index, pd.period_range("2019-01-02 00:00", periods=6,
                                      freq=freq))
Exemplo n.º 5
0
def main():
    df = datasets.load_airline(
    )  #Univariate, monthly records from 1949 to 60 (144 records)
    y_train, y_test = temporal_train_test_split(
        df, test_size=36)  #36 months for testing

    forecaster = NaiveForecaster(
        strategy='seasonal_last', sp=12
    )  #model strategy: last, mean, seasonal_last. sp=12months (yearly season)
    forecaster.fit(y_train)  #fit
    fh = np.arange(1,
                   len(y_test) +
                   1)  #forecast horizon: array with the same lenght of y_test
    y_pred = forecaster.predict(fh)  #pred

    forecaster2 = AutoARIMA(sp=12, suppress_warnings=True, trace=1)
    forecaster2.fit(y_train)
    y_pred2 = forecaster2.predict(fh)

    forecaster3 = ExponentialSmoothing(trend='add',
                                       damped='True',
                                       seasonal='multiplicative',
                                       sp=12)
    forecaster3.fit(y_train)
    y_pred3 = forecaster3.predict(fh)

    forecaster4 = ThetaForecaster(sp=12)
    forecaster4.fit(y_train)
    y_pred4 = forecaster4.predict(fh)

    forecaster5 = EnsembleForecaster([
        ('NaiveForecaster', NaiveForecaster(strategy='seasonal_last', sp=12)),
        ('AutoARIMA', AutoARIMA(sp=12, suppress_warnings=True)),
        ('Exp Smoothing',
         ExponentialSmoothing(trend='add',
                              damped='True',
                              seasonal='multiplicative',
                              sp=12)), ('Theta', ThetaForecaster(sp=12))
    ])
    forecaster5.fit(y_train)
    y_pred5 = forecaster5.predict(fh)

    plot_ys(y_train,
            y_test,
            y_pred,
            y_pred2,
            y_pred3,
            y_pred4,
            y_pred5,
            labels=[
                'Train', 'Test', 'Naive Forecaster', 'AutoARIMA',
                'Exp Smoothing', 'Theta', 'Ensemble'
            ])
    plt.xlabel('Months')
    plt.ylabel('Number of flights')
    plt.title(
        'Time series of the number of international flights in function of time'
    )
    plt.show()

    print('SMAPE Error for NaiveForecaster is:',
          100 * round(smape_loss(y_test, y_pred), 3), '%')
    print('SMAPE Error for AutoARIMA is:',
          100 * round(smape_loss(y_test, y_pred2), 3), '%')
    print('SMAPE Error for Exp Smoothing is:',
          100 * round(smape_loss(y_test, y_pred3), 3), '%')
    print('SMAPE Error for Theta is:',
          100 * round(smape_loss(y_test, y_pred4), 3), '%')
    print('SMAPE Error for Ensemble is:',
          100 * round(smape_loss(y_test, y_pred5), 3), '%')
Exemplo n.º 6
0
plot_series(y)

y.index

y_train, y_test = temporal_train_test_split(y, test_size = 24)
plot_series(y_train, y_test)



fh = ForecastingHorizon(y_test.index, is_relative=False)
fh


ets_frcstr = ExponentialSmoothing(trend='additive', seasonal='additive', sp=12)

ets_frcstr.fit(y_train)



y_pred = ets_frcstr.predict(fh)
plot_series(y_train, y_test, y_pred, labels=['Обучающая', 'т', 'п'])

ets_frcstr.get_fitted_params()
ets_frcstr.get_params()

smape_loss(y_test, y_pred)

auto_ets_frr = AutoETS()
auto_ets_frr.fit(y_pred)