Exemplo n.º 1
0
def block_inception_c(inputs, scope=None, reuse=None):
    """Builds Inception-C block for Inception v4 network."""
    # By default use stride=1 and SAME padding
    with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
                        stride=1,
                        padding='SAME'):
        with tf.variable_scope(scope, 'BlockInceptionC', [inputs],
                               reuse=reuse):
            with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(inputs,
                                       256, [1, 1],
                                       scope='Conv2d_0a_1x1')
            with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(inputs,
                                       384, [1, 1],
                                       scope='Conv2d_0a_1x1')
                branch_1 = tf.concat(axis=3,
                                     values=[
                                         slim.conv2d(branch_1,
                                                     256, [1, 3],
                                                     scope='Conv2d_0b_1x3'),
                                         slim.conv2d(branch_1,
                                                     256, [3, 1],
                                                     scope='Conv2d_0c_3x1')
                                     ])
            with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(inputs,
                                       384, [1, 1],
                                       scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2,
                                       448, [3, 1],
                                       scope='Conv2d_0b_3x1')
                branch_2 = slim.conv2d(branch_2,
                                       512, [1, 3],
                                       scope='Conv2d_0c_1x3')
                branch_2 = tf.concat(axis=3,
                                     values=[
                                         slim.conv2d(branch_2,
                                                     256, [1, 3],
                                                     scope='Conv2d_0d_1x3'),
                                         slim.conv2d(branch_2,
                                                     256, [3, 1],
                                                     scope='Conv2d_0e_3x1')
                                     ])
            with tf.variable_scope('Branch_3'):
                branch_3 = slim.avg_pool2d(inputs, [3, 3],
                                           scope='AvgPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3,
                                       256, [1, 1],
                                       scope='Conv2d_0b_1x1')
            return tf.concat(axis=3,
                             values=[branch_0, branch_1, branch_2, branch_3])
Exemplo n.º 2
0
def _build_aux_head(net, end_points, num_classes, hparams, scope):
    """Auxiliary head used for all models across all datasets."""
    with tf.variable_scope(scope):
        aux_logits = tf.identity(net)
        with tf.variable_scope('aux_logits'):
            aux_logits = slim.avg_pool2d(aux_logits, [5, 5],
                                         stride=3,
                                         padding='VALID')
            aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
            aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
            aux_logits = tf.nn.relu(aux_logits)
            # Shape of feature map before the final layer.
            shape = aux_logits.shape
            if hparams.data_format == 'NHWC':
                shape = shape[1:3]
            else:
                shape = shape[2:4]
            aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
            aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
            aux_logits = tf.nn.relu(aux_logits)
            aux_logits = tf.contrib.layers.flatten(aux_logits)
            aux_logits = slim.fully_connected(aux_logits, num_classes)
            end_points['AuxLogits'] = aux_logits
Exemplo n.º 3
0
def mobilenet_v1(inputs,
                 num_classes=1000,
                 dropout_keep_prob=0.999,
                 is_training=True,
                 min_depth=8,
                 depth_multiplier=1.0,
                 conv_defs=None,
                 prediction_fn=tf.contrib.layers.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='MobilenetV1',
                 global_pool=False):
    """Mobilenet v1 model for classification.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    dropout_keep_prob: the percentage of activation values that are retained.
    is_training: whether is training or not.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    conv_defs: A list of ConvDef namedtuples specifying the net architecture.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape is [B, C], if false logits is
        of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.

  Returns:
    net: a 2D Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: Input rank is invalid.
  """
    input_shape = inputs.get_shape().as_list()
    if len(input_shape) != 4:
        raise ValueError('Invalid input tensor rank, expected 4, was: %d' %
                         len(input_shape))

    with tf.variable_scope(scope, 'MobilenetV1', [inputs],
                           reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            net, end_points = mobilenet_v1_base(
                inputs,
                scope=scope,
                min_depth=min_depth,
                depth_multiplier=depth_multiplier,
                conv_defs=conv_defs)
            with tf.variable_scope('Logits'):
                if global_pool:
                    # Global average pooling.
                    net = tf.reduce_mean(net, [1, 2],
                                         keep_dims=True,
                                         name='global_pool')
                    end_points['global_pool'] = net
                else:
                    # Pooling with a fixed kernel size.
                    kernel_size = _reduced_kernel_size_for_small_input(
                        net, [7, 7])
                    net = slim.avg_pool2d(net,
                                          kernel_size,
                                          padding='VALID',
                                          scope='AvgPool_1a')
                    end_points['AvgPool_1a'] = net
                if not num_classes:
                    return net, end_points
                # 1 x 1 x 1024
                net = slim.dropout(net,
                                   keep_prob=dropout_keep_prob,
                                   scope='Dropout_1b')
                logits = slim.conv2d(net,
                                     num_classes, [1, 1],
                                     activation_fn=None,
                                     normalizer_fn=None,
                                     scope='Conv2d_1c_1x1')
                if spatial_squeeze:
                    logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
            end_points['Logits'] = logits
            if prediction_fn:
                end_points['Predictions'] = prediction_fn(logits,
                                                          scope='Predictions')
    return logits, end_points
Exemplo n.º 4
0
def inception_v2(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 min_depth=16,
                 depth_multiplier=1.0,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='InceptionV2',
                 global_pool=False):
  """Inception v2 model for classification.

  Constructs an Inception v2 network for classification as described in
  http://arxiv.org/abs/1502.03167.

  The default image size used to train this network is 224x224.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
        shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.

  Returns:
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')

  # Final pooling and prediction
  with tf.variable_scope(scope, 'InceptionV2', [inputs], reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v2_base(
          inputs, scope=scope, min_depth=min_depth,
          depth_multiplier=depth_multiplier)
      with tf.variable_scope('Logits'):
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          kernel_size = _reduced_kernel_size_for_small_input(net, [7, 7])
          net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                                scope='AvgPool_1a_{}x{}'.format(*kernel_size))
          end_points['AvgPool_1a'] = net
        if not num_classes:
          return net, end_points
        # 1 x 1 x 1024
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
      end_points['Logits'] = logits
      end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
Exemplo n.º 5
0
def inception_v2_base(inputs,
                      final_endpoint='Mixed_5c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      use_separable_conv=True,
                      data_format='NHWC',
                      scope=None):
  """Inception v2 (6a2).

  Constructs an Inception v2 network from inputs to the given final endpoint.
  This method can construct the network up to the layer inception(5b) as
  described in http://arxiv.org/abs/1502.03167.

  Args:
    inputs: a tensor of shape [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
      'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4a',
      'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a', 'Mixed_5b',
      'Mixed_5c'].
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    use_separable_conv: Use a separable convolution for the first layer
      Conv2d_1a_7x7. If this is False, use a normal convolution instead.
    data_format: Data format of the activations ('NHWC' or 'NCHW').
    scope: Optional variable_scope.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """

  # end_points will collect relevant activations for external use, for example
  # summaries or losses.
  end_points = {}

  # Used to find thinned depths for each layer.
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

  if data_format != 'NHWC' and data_format != 'NCHW':
    raise ValueError('data_format must be either NHWC or NCHW.')
  if data_format == 'NCHW' and use_separable_conv:
    raise ValueError(
        'separable convolution only supports NHWC layout. NCHW data format can'
        ' only be used when use_separable_conv is False.'
    )

  concat_dim = 3 if data_format == 'NHWC' else 1
  with tf.variable_scope(scope, 'InceptionV2', [inputs]):
    with slim.arg_scope(
        [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
        stride=1,
        padding='SAME',
        data_format=data_format):

      # Note that sizes in the comments below assume an input spatial size of
      # 224x224, however, the inputs can be of any size greater 32x32.

      # 224 x 224 x 3
      end_point = 'Conv2d_1a_7x7'

      if use_separable_conv:
        # depthwise_multiplier here is different from depth_multiplier.
        # depthwise_multiplier determines the output channels of the initial
        # depthwise conv (see docs for tf.nn.separable_conv2d), while
        # depth_multiplier controls the # channels of the subsequent 1x1
        # convolution. Must have
        #   in_channels * depthwise_multipler <= out_channels
        # so that the separable convolution is not overparameterized.
        depthwise_multiplier = min(int(depth(64) / 3), 8)
        net = slim.separable_conv2d(
            inputs, depth(64), [7, 7],
            depth_multiplier=depthwise_multiplier,
            stride=2,
            padding='SAME',
            weights_initializer=trunc_normal(1.0),
            scope=end_point)
      else:
        # Use a normal convolution instead of a separable convolution.
        net = slim.conv2d(
            inputs,
            depth(64), [7, 7],
            stride=2,
            weights_initializer=trunc_normal(1.0),
            scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 112 x 112 x 64
      end_point = 'MaxPool_2a_3x3'
      net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 64
      end_point = 'Conv2d_2b_1x1'
      net = slim.conv2d(net, depth(64), [1, 1], scope=end_point,
                        weights_initializer=trunc_normal(0.1))
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 64
      end_point = 'Conv2d_2c_3x3'
      net = slim.conv2d(net, depth(192), [3, 3], scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 56 x 56 x 192
      end_point = 'MaxPool_3a_3x3'
      net = slim.max_pool2d(net, [3, 3], scope=end_point, stride=2)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 192
      # Inception module.
      end_point = 'Mixed_3b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(32), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 256
      end_point = 'Mixed_3c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 28 x 28 x 320
      end_point = 'Mixed_4a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(160), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], stride=2, scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(
              net, [3, 3], stride=2, scope='MaxPool_1a_3x3')
        net = tf.concat(axis=concat_dim, values=[branch_0, branch_1, branch_2])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(224), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(64), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(
              branch_1, depth(96), [3, 3], scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(128), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4d'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(160), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_4e'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(96), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(192), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(96), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 14 x 14 x 576
      end_point = 'Mixed_5a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(
              net, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2,
                                 scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2,
                                     scope='MaxPool_1a_3x3')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(160), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
      # 7 x 7 x 1024
      end_point = 'Mixed_5c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(320), [3, 3],
                                 scope='Conv2d_0b_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(
              net, depth(192), [1, 1],
              weights_initializer=trunc_normal(0.09),
              scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(224), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(128), [1, 1],
              weights_initializer=trunc_normal(0.1),
              scope='Conv2d_0b_1x1')
        net = tf.concat(
            axis=concat_dim, values=[branch_0, branch_1, branch_2, branch_3])
        end_points[end_point] = net
        if end_point == final_endpoint: return net, end_points
    raise ValueError('Unknown final endpoint %s' % final_endpoint)
Exemplo n.º 6
0
def inception_v3(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 min_depth=16,
                 depth_multiplier=1.0,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 create_aux_logits=True,
                 scope='InceptionV3',
                 global_pool=False):
  """Inception model from http://arxiv.org/abs/1512.00567.

  "Rethinking the Inception Architecture for Computer Vision"

  Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
  Zbigniew Wojna.

  With the default arguments this method constructs the exact model defined in
  the paper. However, one can experiment with variations of the inception_v3
  network by changing arguments dropout_keep_prob, min_depth and
  depth_multiplier.

  The default image size used to train this network is 299x299.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
        shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    create_aux_logits: Whether to create the auxiliary logits.
    scope: Optional variable_scope.
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.

  Returns:
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.

  Raises:
    ValueError: if 'depth_multiplier' is less than or equal to zero.
  """
  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

  with tf.variable_scope(scope, 'InceptionV3', [inputs], reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v3_base(
          inputs, scope=scope, min_depth=min_depth,
          depth_multiplier=depth_multiplier)

      # Auxiliary Head logits
      if create_aux_logits and num_classes:
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1, padding='SAME'):
          aux_logits = end_points['Mixed_6e']
          with tf.variable_scope('AuxLogits'):
            aux_logits = slim.avg_pool2d(
                aux_logits, [5, 5], stride=3, padding='VALID',
                scope='AvgPool_1a_5x5')
            aux_logits = slim.conv2d(aux_logits, depth(128), [1, 1],
                                     scope='Conv2d_1b_1x1')

            # Shape of feature map before the final layer.
            kernel_size = _reduced_kernel_size_for_small_input(
                aux_logits, [5, 5])
            aux_logits = slim.conv2d(
                aux_logits, depth(768), kernel_size,
                weights_initializer=trunc_normal(0.01),
                padding='VALID', scope='Conv2d_2a_{}x{}'.format(*kernel_size))
            aux_logits = slim.conv2d(
                aux_logits, num_classes, [1, 1], activation_fn=None,
                normalizer_fn=None, weights_initializer=trunc_normal(0.001),
                scope='Conv2d_2b_1x1')
            if spatial_squeeze:
              aux_logits = tf.squeeze(aux_logits, [1, 2], name='SpatialSqueeze')
            end_points['AuxLogits'] = aux_logits

      # Final pooling and prediction
      with tf.variable_scope('Logits'):
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='GlobalPool')
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          kernel_size = _reduced_kernel_size_for_small_input(net, [8, 8])
          net = slim.avg_pool2d(net, kernel_size, padding='VALID',
                                scope='AvgPool_1a_{}x{}'.format(*kernel_size))
          end_points['AvgPool_1a'] = net
        if not num_classes:
          return net, end_points
        # 1 x 1 x 2048
        net = slim.dropout(net, keep_prob=dropout_keep_prob, scope='Dropout_1b')
        end_points['PreLogits'] = net
        # 2048
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_1c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
        # 1000
      end_points['Logits'] = logits
      end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
Exemplo n.º 7
0
def inception_v3_base(inputs,
                      final_endpoint='Mixed_7c',
                      min_depth=16,
                      depth_multiplier=1.0,
                      scope=None):
  """Inception model from http://arxiv.org/abs/1512.00567.

  Constructs an Inception v3 network from inputs to the given final endpoint.
  This method can construct the network up to the final inception block
  Mixed_7c.

  Note that the names of the layers in the paper do not correspond to the names
  of the endpoints registered by this function although they build the same
  network.

  Here is a mapping from the old_names to the new names:
  Old name          | New name
  =======================================
  conv0             | Conv2d_1a_3x3
  conv1             | Conv2d_2a_3x3
  conv2             | Conv2d_2b_3x3
  pool1             | MaxPool_3a_3x3
  conv3             | Conv2d_3b_1x1
  conv4             | Conv2d_4a_3x3
  pool2             | MaxPool_5a_3x3
  mixed_35x35x256a  | Mixed_5b
  mixed_35x35x288a  | Mixed_5c
  mixed_35x35x288b  | Mixed_5d
  mixed_17x17x768a  | Mixed_6a
  mixed_17x17x768b  | Mixed_6b
  mixed_17x17x768c  | Mixed_6c
  mixed_17x17x768d  | Mixed_6d
  mixed_17x17x768e  | Mixed_6e
  mixed_8x8x1280a   | Mixed_7a
  mixed_8x8x2048a   | Mixed_7b
  mixed_8x8x2048b   | Mixed_7c

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
      'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
      'Mixed_5b', 'Mixed_5c', 'Mixed_5d', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c',
      'Mixed_6d', 'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c'].
    min_depth: Minimum depth value (number of channels) for all convolution ops.
      Enforced when depth_multiplier < 1, and not an active constraint when
      depth_multiplier >= 1.
    depth_multiplier: Float multiplier for the depth (number of channels)
      for all convolution ops. The value must be greater than zero. Typical
      usage will be to set this value in (0, 1) to reduce the number of
      parameters or computation cost of the model.
    scope: Optional variable_scope.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
                or depth_multiplier <= 0
  """
  # end_points will collect relevant activations for external use, for example
  # summaries or losses.
  end_points = {}

  if depth_multiplier <= 0:
    raise ValueError('depth_multiplier is not greater than zero.')
  depth = lambda d: max(int(d * depth_multiplier), min_depth)

  with tf.variable_scope(scope, 'InceptionV3', [inputs]):
    with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                        stride=1, padding='VALID'):
      # 299 x 299 x 3
      end_point = 'Conv2d_1a_3x3'
      net = slim.conv2d(inputs, depth(32), [3, 3], stride=2, scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 149 x 149 x 32
      end_point = 'Conv2d_2a_3x3'
      net = slim.conv2d(net, depth(32), [3, 3], scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 147 x 147 x 32
      end_point = 'Conv2d_2b_3x3'
      net = slim.conv2d(net, depth(64), [3, 3], padding='SAME', scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 147 x 147 x 64
      end_point = 'MaxPool_3a_3x3'
      net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 73 x 73 x 64
      end_point = 'Conv2d_3b_1x1'
      net = slim.conv2d(net, depth(80), [1, 1], scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 73 x 73 x 80.
      end_point = 'Conv2d_4a_3x3'
      net = slim.conv2d(net, depth(192), [3, 3], scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 71 x 71 x 192.
      end_point = 'MaxPool_5a_3x3'
      net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # 35 x 35 x 192.

    # Inception blocks
    with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                        stride=1, padding='SAME'):
      # mixed: 35 x 35 x 256.
      end_point = 'Mixed_5b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [5, 5],
                                 scope='Conv2d_0b_5x5')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(32), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_1: 35 x 35 x 288.
      end_point = 'Mixed_5c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0b_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [5, 5],
                                 scope='Conv_1_0c_5x5')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(64), [1, 1],
                                 scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_2: 35 x 35 x 288.
      end_point = 'Mixed_5d'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(48), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(64), [5, 5],
                                 scope='Conv2d_0b_5x5')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_2 = slim.conv2d(branch_2, depth(96), [3, 3],
                                 scope='Conv2d_0c_3x3')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_3: 17 x 17 x 768.
      end_point = 'Mixed_6a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(384), [3, 3], stride=2,
                                 padding='VALID', scope='Conv2d_1a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(64), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3],
                                 scope='Conv2d_0b_3x3')
          branch_1 = slim.conv2d(branch_1, depth(96), [3, 3], stride=2,
                                 padding='VALID', scope='Conv2d_1a_1x1')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                     scope='MaxPool_1a_3x3')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed4: 17 x 17 x 768.
      end_point = 'Mixed_6b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(128), [1, 7],
                                 scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                 scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(128), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [7, 1],
                                 scope='Conv2d_0b_7x1')
          branch_2 = slim.conv2d(branch_2, depth(128), [1, 7],
                                 scope='Conv2d_0c_1x7')
          branch_2 = slim.conv2d(branch_2, depth(128), [7, 1],
                                 scope='Conv2d_0d_7x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                 scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_5: 17 x 17 x 768.
      end_point = 'Mixed_6c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [1, 7],
                                 scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                 scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],
                                 scope='Conv2d_0b_7x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [1, 7],
                                 scope='Conv2d_0c_1x7')
          branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],
                                 scope='Conv2d_0d_7x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                 scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # mixed_6: 17 x 17 x 768.
      end_point = 'Mixed_6d'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(160), [1, 7],
                                 scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                 scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(160), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],
                                 scope='Conv2d_0b_7x1')
          branch_2 = slim.conv2d(branch_2, depth(160), [1, 7],
                                 scope='Conv2d_0c_1x7')
          branch_2 = slim.conv2d(branch_2, depth(160), [7, 1],
                                 scope='Conv2d_0d_7x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                 scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_7: 17 x 17 x 768.
      end_point = 'Mixed_6e'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [1, 7],
                                 scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                 scope='Conv2d_0c_7x1')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [7, 1],
                                 scope='Conv2d_0b_7x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                 scope='Conv2d_0c_1x7')
          branch_2 = slim.conv2d(branch_2, depth(192), [7, 1],
                                 scope='Conv2d_0d_7x1')
          branch_2 = slim.conv2d(branch_2, depth(192), [1, 7],
                                 scope='Conv2d_0e_1x7')
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
                                 scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_8: 8 x 8 x 1280.
      end_point = 'Mixed_7a'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
          branch_0 = slim.conv2d(branch_0, depth(320), [3, 3], stride=2,
                                 padding='VALID', scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(192), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [1, 7],
                                 scope='Conv2d_0b_1x7')
          branch_1 = slim.conv2d(branch_1, depth(192), [7, 1],
                                 scope='Conv2d_0c_7x1')
          branch_1 = slim.conv2d(branch_1, depth(192), [3, 3], stride=2,
                                 padding='VALID', scope='Conv2d_1a_3x3')
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
                                     scope='MaxPool_1a_3x3')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
      # mixed_9: 8 x 8 x 2048.
      end_point = 'Mixed_7b'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = tf.concat(axis=3, values=[
              slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
              slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')])
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(
              branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
          branch_2 = tf.concat(axis=3, values=[
              slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
              slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points

      # mixed_10: 8 x 8 x 2048.
      end_point = 'Mixed_7c'
      with tf.variable_scope(end_point):
        with tf.variable_scope('Branch_0'):
          branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
        with tf.variable_scope('Branch_1'):
          branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = tf.concat(axis=3, values=[
              slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
              slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1')])
        with tf.variable_scope('Branch_2'):
          branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = slim.conv2d(
              branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
          branch_2 = tf.concat(axis=3, values=[
              slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
              slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
        with tf.variable_scope('Branch_3'):
          branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = slim.conv2d(
              branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
        net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
      end_points[end_point] = net
      if end_point == final_endpoint: return net, end_points
    raise ValueError('Unknown final endpoint %s' % final_endpoint)
Exemplo n.º 8
0
def inception_resnet_v2(inputs,
                        num_classes=1001,
                        is_training=True,
                        dropout_keep_prob=0.8,
                        reuse=None,
                        scope='InceptionResnetV2',
                        create_aux_logits=True,
                        activation_fn=tf.nn.relu):
    """Creates the Inception Resnet V2 model.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
      Dimension batch_size may be undefined. If create_aux_logits is false,
      also height and width may be undefined.
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before  dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: float, the fraction to keep before final layer.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    create_aux_logits: Whether to include the auxilliary logits.
    activation_fn: Activation function for conv2d.

  Returns:
    net: the output of the logits layer (if num_classes is a non-zero integer),
      or the non-dropped-out input to the logits layer (if num_classes is 0 or
      None).
    end_points: the set of end_points from the inception model.
  """
    end_points = {}

    with tf.variable_scope(scope, 'InceptionResnetV2', [inputs],
                           reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):

            net, end_points = inception_resnet_v2_base(
                inputs, scope=scope, activation_fn=activation_fn)

            if create_aux_logits and num_classes:
                with tf.variable_scope('AuxLogits'):
                    aux = end_points['PreAuxLogits']
                    aux = slim.avg_pool2d(aux,
                                          5,
                                          stride=3,
                                          padding='VALID',
                                          scope='Conv2d_1a_3x3')
                    aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1')
                    aux = slim.conv2d(aux,
                                      768,
                                      aux.get_shape()[1:3],
                                      padding='VALID',
                                      scope='Conv2d_2a_5x5')
                    aux = slim.flatten(aux)
                    aux = slim.fully_connected(aux,
                                               num_classes,
                                               activation_fn=None,
                                               scope='Logits')
                    end_points['AuxLogits'] = aux

            with tf.variable_scope('Logits'):
                # TODO(sguada,arnoegw): Consider adding a parameter global_pool which
                # can be set to False to disable pooling here (as in resnet_*()).
                kernel_size = net.get_shape()[1:3]
                if kernel_size.is_fully_defined():
                    net = slim.avg_pool2d(net,
                                          kernel_size,
                                          padding='VALID',
                                          scope='AvgPool_1a_8x8')
                else:
                    net = tf.reduce_mean(net, [1, 2],
                                         keep_dims=True,
                                         name='global_pool')
                end_points['global_pool'] = net
                if not num_classes:
                    return net, end_points
                net = slim.flatten(net)
                net = slim.dropout(net,
                                   dropout_keep_prob,
                                   is_training=is_training,
                                   scope='Dropout')
                end_points['PreLogitsFlatten'] = net
                logits = slim.fully_connected(net,
                                              num_classes,
                                              activation_fn=None,
                                              scope='Logits')
                end_points['Logits'] = logits
                end_points['Predictions'] = tf.nn.softmax(logits,
                                                          name='Predictions')

        return logits, end_points
Exemplo n.º 9
0
def inception_resnet_v2_base(inputs,
                             final_endpoint='Conv2d_7b_1x1',
                             output_stride=16,
                             align_feature_maps=False,
                             scope=None,
                             activation_fn=tf.nn.relu):
    """Inception model from  http://arxiv.org/abs/1602.07261.

  Constructs an Inception Resnet v2 network from inputs to the given final
  endpoint. This method can construct the network up to the final inception
  block Conv2d_7b_1x1.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    final_endpoint: specifies the endpoint to construct the network up to. It
      can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
      'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
      'Mixed_5b', 'Mixed_6a', 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
    output_stride: A scalar that specifies the requested ratio of input to
      output spatial resolution. Only supports 8 and 16.
    align_feature_maps: When true, changes all the VALID paddings in the network
      to SAME padding so that the feature maps are aligned.
    scope: Optional variable_scope.
    activation_fn: Activation function for block scopes.

  Returns:
    tensor_out: output tensor corresponding to the final_endpoint.
    end_points: a set of activations for external use, for example summaries or
                losses.

  Raises:
    ValueError: if final_endpoint is not set to one of the predefined values,
      or if the output_stride is not 8 or 16, or if the output_stride is 8 and
      we request an end point after 'PreAuxLogits'.
  """
    if output_stride != 8 and output_stride != 16:
        raise ValueError('output_stride must be 8 or 16.')

    padding = 'SAME' if align_feature_maps else 'VALID'

    end_points = {}

    def add_and_check_final(name, net):
        end_points[name] = net
        return name == final_endpoint

    with tf.variable_scope(scope, 'InceptionResnetV2', [inputs]):
        with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                            stride=1,
                            padding='SAME'):
            # 149 x 149 x 32
            net = slim.conv2d(inputs,
                              32,
                              3,
                              stride=2,
                              padding=padding,
                              scope='Conv2d_1a_3x3')
            if add_and_check_final('Conv2d_1a_3x3', net):
                return net, end_points

            # 147 x 147 x 32
            net = slim.conv2d(net,
                              32,
                              3,
                              padding=padding,
                              scope='Conv2d_2a_3x3')
            if add_and_check_final('Conv2d_2a_3x3', net):
                return net, end_points
            # 147 x 147 x 64
            net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
            if add_and_check_final('Conv2d_2b_3x3', net):
                return net, end_points
            # 73 x 73 x 64
            net = slim.max_pool2d(net,
                                  3,
                                  stride=2,
                                  padding=padding,
                                  scope='MaxPool_3a_3x3')
            if add_and_check_final('MaxPool_3a_3x3', net):
                return net, end_points
            # 73 x 73 x 80
            net = slim.conv2d(net,
                              80,
                              1,
                              padding=padding,
                              scope='Conv2d_3b_1x1')
            if add_and_check_final('Conv2d_3b_1x1', net):
                return net, end_points
            # 71 x 71 x 192
            net = slim.conv2d(net,
                              192,
                              3,
                              padding=padding,
                              scope='Conv2d_4a_3x3')
            if add_and_check_final('Conv2d_4a_3x3', net):
                return net, end_points
            # 35 x 35 x 192
            net = slim.max_pool2d(net,
                                  3,
                                  stride=2,
                                  padding=padding,
                                  scope='MaxPool_5a_3x3')
            if add_and_check_final('MaxPool_5a_3x3', net):
                return net, end_points

            # 35 x 35 x 320
            with tf.variable_scope('Mixed_5b'):
                with tf.variable_scope('Branch_0'):
                    tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
                with tf.variable_scope('Branch_1'):
                    tower_conv1_0 = slim.conv2d(net,
                                                48,
                                                1,
                                                scope='Conv2d_0a_1x1')
                    tower_conv1_1 = slim.conv2d(tower_conv1_0,
                                                64,
                                                5,
                                                scope='Conv2d_0b_5x5')
                with tf.variable_scope('Branch_2'):
                    tower_conv2_0 = slim.conv2d(net,
                                                64,
                                                1,
                                                scope='Conv2d_0a_1x1')
                    tower_conv2_1 = slim.conv2d(tower_conv2_0,
                                                96,
                                                3,
                                                scope='Conv2d_0b_3x3')
                    tower_conv2_2 = slim.conv2d(tower_conv2_1,
                                                96,
                                                3,
                                                scope='Conv2d_0c_3x3')
                with tf.variable_scope('Branch_3'):
                    tower_pool = slim.avg_pool2d(net,
                                                 3,
                                                 stride=1,
                                                 padding='SAME',
                                                 scope='AvgPool_0a_3x3')
                    tower_pool_1 = slim.conv2d(tower_pool,
                                               64,
                                               1,
                                               scope='Conv2d_0b_1x1')
                net = tf.concat(
                    [tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1],
                    3)

            if add_and_check_final('Mixed_5b', net): return net, end_points
            # TODO(alemi): Register intermediate endpoints
            net = slim.repeat(net,
                              10,
                              block35,
                              scale=0.17,
                              activation_fn=activation_fn)

            # 17 x 17 x 1088 if output_stride == 8,
            # 33 x 33 x 1088 if output_stride == 16
            use_atrous = output_stride == 8

            with tf.variable_scope('Mixed_6a'):
                with tf.variable_scope('Branch_0'):
                    tower_conv = slim.conv2d(net,
                                             384,
                                             3,
                                             stride=1 if use_atrous else 2,
                                             padding=padding,
                                             scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_1'):
                    tower_conv1_0 = slim.conv2d(net,
                                                256,
                                                1,
                                                scope='Conv2d_0a_1x1')
                    tower_conv1_1 = slim.conv2d(tower_conv1_0,
                                                256,
                                                3,
                                                scope='Conv2d_0b_3x3')
                    tower_conv1_2 = slim.conv2d(tower_conv1_1,
                                                384,
                                                3,
                                                stride=1 if use_atrous else 2,
                                                padding=padding,
                                                scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_2'):
                    tower_pool = slim.max_pool2d(net,
                                                 3,
                                                 stride=1 if use_atrous else 2,
                                                 padding=padding,
                                                 scope='MaxPool_1a_3x3')
                net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)

            if add_and_check_final('Mixed_6a', net): return net, end_points

            # TODO(alemi): register intermediate endpoints
            with slim.arg_scope([slim.conv2d], rate=2 if use_atrous else 1):
                net = slim.repeat(net,
                                  20,
                                  block17,
                                  scale=0.10,
                                  activation_fn=activation_fn)
            if add_and_check_final('PreAuxLogits', net): return net, end_points

            if output_stride == 8:
                # TODO(gpapan): Properly support output_stride for the rest of the net.
                raise ValueError(
                    'output_stride==8 is only supported up to the '
                    'PreAuxlogits end_point for now.')

            # 8 x 8 x 2080
            with tf.variable_scope('Mixed_7a'):
                with tf.variable_scope('Branch_0'):
                    tower_conv = slim.conv2d(net,
                                             256,
                                             1,
                                             scope='Conv2d_0a_1x1')
                    tower_conv_1 = slim.conv2d(tower_conv,
                                               384,
                                               3,
                                               stride=2,
                                               padding=padding,
                                               scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_1'):
                    tower_conv1 = slim.conv2d(net,
                                              256,
                                              1,
                                              scope='Conv2d_0a_1x1')
                    tower_conv1_1 = slim.conv2d(tower_conv1,
                                                288,
                                                3,
                                                stride=2,
                                                padding=padding,
                                                scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_2'):
                    tower_conv2 = slim.conv2d(net,
                                              256,
                                              1,
                                              scope='Conv2d_0a_1x1')
                    tower_conv2_1 = slim.conv2d(tower_conv2,
                                                288,
                                                3,
                                                scope='Conv2d_0b_3x3')
                    tower_conv2_2 = slim.conv2d(tower_conv2_1,
                                                320,
                                                3,
                                                stride=2,
                                                padding=padding,
                                                scope='Conv2d_1a_3x3')
                with tf.variable_scope('Branch_3'):
                    tower_pool = slim.max_pool2d(net,
                                                 3,
                                                 stride=2,
                                                 padding=padding,
                                                 scope='MaxPool_1a_3x3')
                net = tf.concat(
                    [tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool],
                    3)

            if add_and_check_final('Mixed_7a', net): return net, end_points

            # TODO(alemi): register intermediate endpoints
            net = slim.repeat(net,
                              9,
                              block8,
                              scale=0.20,
                              activation_fn=activation_fn)
            net = block8(net, activation_fn=None)

            # 8 x 8 x 1536
            net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
            if add_and_check_final('Conv2d_7b_1x1', net):
                return net, end_points

        raise ValueError('final_endpoint (%s) not recognized', final_endpoint)
Exemplo n.º 10
0
def inception_v4(inputs,
                 num_classes=1001,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 reuse=None,
                 scope='InceptionV4',
                 create_aux_logits=True):
    """Creates the Inception V4 model.

  Args:
    inputs: a 4-D tensor of size [batch_size, height, width, 3].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: float, the fraction to keep before final layer.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    create_aux_logits: Whether to include the auxiliary logits.

  Returns:
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped input to the logits layer
      if num_classes is 0 or None.
    end_points: the set of end_points from the inception model.
  """
    end_points = {}
    with tf.variable_scope(scope, 'InceptionV4', [inputs],
                           reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            net, end_points = inception_v4_base(inputs, scope=scope)

            with slim.arg_scope(
                [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                    stride=1,
                    padding='SAME'):
                # Auxiliary Head logits
                if create_aux_logits and num_classes:
                    with tf.variable_scope('AuxLogits'):
                        # 17 x 17 x 1024
                        aux_logits = end_points['Mixed_6h']
                        aux_logits = slim.avg_pool2d(aux_logits, [5, 5],
                                                     stride=3,
                                                     padding='VALID',
                                                     scope='AvgPool_1a_5x5')
                        aux_logits = slim.conv2d(aux_logits,
                                                 128, [1, 1],
                                                 scope='Conv2d_1b_1x1')
                        aux_logits = slim.conv2d(aux_logits,
                                                 768,
                                                 aux_logits.get_shape()[1:3],
                                                 padding='VALID',
                                                 scope='Conv2d_2a')
                        aux_logits = slim.flatten(aux_logits)
                        aux_logits = slim.fully_connected(aux_logits,
                                                          num_classes,
                                                          activation_fn=None,
                                                          scope='Aux_logits')
                        end_points['AuxLogits'] = aux_logits

                # Final pooling and prediction
                # TODO(sguada,arnoegw): Consider adding a parameter global_pool which
                # can be set to False to disable pooling here (as in resnet_*()).
                with tf.variable_scope('Logits'):
                    # 8 x 8 x 1536
                    kernel_size = net.get_shape()[1:3]
                    if kernel_size.is_fully_defined():
                        net = slim.avg_pool2d(net,
                                              kernel_size,
                                              padding='VALID',
                                              scope='AvgPool_1a')
                    else:
                        net = tf.reduce_mean(net, [1, 2],
                                             keep_dims=True,
                                             name='global_pool')
                    end_points['global_pool'] = net
                    if not num_classes:
                        return net, end_points
                    # 1 x 1 x 1536
                    net = slim.dropout(net,
                                       dropout_keep_prob,
                                       scope='Dropout_1b')
                    net = slim.flatten(net, scope='PreLogitsFlatten')
                    end_points['PreLogitsFlatten'] = net
                    # 1536
                    logits = slim.fully_connected(net,
                                                  num_classes,
                                                  activation_fn=None,
                                                  scope='Logits')
                    end_points['Logits'] = logits
                    end_points['Predictions'] = tf.nn.softmax(
                        logits, name='Predictions')
        return logits, end_points
Exemplo n.º 11
0
def inception_v1(inputs,
                 num_classes=1000,
                 is_training=True,
                 dropout_keep_prob=0.8,
                 prediction_fn=slim.softmax,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='InceptionV1',
                 global_pool=False):
  """Defines the Inception V1 architecture.

  This architecture is defined in:

    Going deeper with convolutions
    Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
    Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
    http://arxiv.org/pdf/1409.4842v1.pdf.

  The default image size used to train this network is 224x224.

  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes. If 0 or None, the logits layer
      is omitted and the input features to the logits layer (before dropout)
      are returned instead.
    is_training: whether is training or not.
    dropout_keep_prob: the percentage of activation values that are retained.
    prediction_fn: a function to get predictions out of logits.
    spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
        shape [B, 1, 1, C], where B is batch_size and C is number of classes.
    reuse: whether or not the network and its variables should be reused. To be
      able to reuse 'scope' must be given.
    scope: Optional variable_scope.
    global_pool: Optional boolean flag to control the avgpooling before the
      logits layer. If false or unset, pooling is done with a fixed window
      that reduces default-sized inputs to 1x1, while larger inputs lead to
      larger outputs. If true, any input size is pooled down to 1x1.

  Returns:
    net: a Tensor with the logits (pre-softmax activations) if num_classes
      is a non-zero integer, or the non-dropped-out input to the logits layer
      if num_classes is 0 or None.
    end_points: a dictionary from components of the network to the corresponding
      activation.
  """
  # Final pooling and prediction
  with tf.variable_scope(scope, 'InceptionV1', [inputs], reuse=reuse) as scope:
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                        is_training=is_training):
      net, end_points = inception_v1_base(inputs, scope=scope)
      with tf.variable_scope('Logits'):
        if global_pool:
          # Global average pooling.
          net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
          end_points['global_pool'] = net
        else:
          # Pooling with a fixed kernel size.
          net = slim.avg_pool2d(net, [7, 7], stride=1, scope='AvgPool_0a_7x7')
          end_points['AvgPool_0a_7x7'] = net
        if not num_classes:
          return net, end_points
        net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b')
        logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                             normalizer_fn=None, scope='Conv2d_0c_1x1')
        if spatial_squeeze:
          logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')

        end_points['Logits'] = logits
        end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
  return logits, end_points
Exemplo n.º 12
0
def inception_resnet_v1(inputs,
                        is_training=True,
                        dropout_keep_prob=0.8,
                        bottleneck_layer_size=128,
                        reuse=None,
                        scope='InceptionResnetV1'):
    end_points = {}

    with tf.compat.v1.variable_scope(scope,
                                     'InceptionResnetV1', [inputs],
                                     reuse=reuse):
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
            with slim.arg_scope(
                [slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
                    stride=1,
                    padding='SAME'):
                # 149 x 149 x 32
                net = slim.conv2d(inputs,
                                  32,
                                  3,
                                  stride=2,
                                  padding='VALID',
                                  scope='Conv2d_1a_3x3')
                end_points['Conv2d_1a_3x3'] = net
                # 147 x 147 x 32
                net = slim.conv2d(net,
                                  32,
                                  3,
                                  padding='VALID',
                                  scope='Conv2d_2a_3x3')
                end_points['Conv2d_2a_3x3'] = net
                # 147 x 147 x 64
                net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
                end_points['Conv2d_2b_3x3'] = net
                # 73 x 73 x 64
                net = slim.max_pool2d(net,
                                      3,
                                      stride=2,
                                      padding='VALID',
                                      scope='MaxPool_3a_3x3')
                end_points['MaxPool_3a_3x3'] = net
                # 73 x 73 x 80
                net = slim.conv2d(net,
                                  80,
                                  1,
                                  padding='VALID',
                                  scope='Conv2d_3b_1x1')
                end_points['Conv2d_3b_1x1'] = net
                # 71 x 71 x 192
                net = slim.conv2d(net,
                                  192,
                                  3,
                                  padding='VALID',
                                  scope='Conv2d_4a_3x3')
                end_points['Conv2d_4a_3x3'] = net
                # 35 x 35 x 256
                net = slim.conv2d(net,
                                  256,
                                  3,
                                  stride=2,
                                  padding='VALID',
                                  scope='Conv2d_4b_3x3')
                end_points['Conv2d_4b_3x3'] = net

                # 5 x Inception-resnet-A
                net = slim.repeat(net, 5, block35, scale=0.17)

                # Reduction-A
                with tf.compat.v1.variable_scope('Mixed_6a'):
                    net = reduction_a(net, 192, 192, 256, 384)
                end_points['Mixed_6a'] = net

                # 10 x Inception-Resnet-B
                net = slim.repeat(net, 10, block17, scale=0.10)

                # Reduction-B
                with tf.compat.v1.variable_scope('Mixed_7a'):
                    net = reduction_b(net)
                end_points['Mixed_7a'] = net

                # 5 x Inception-Resnet-C
                net = slim.repeat(net, 5, block8, scale=0.20)
                net = block8(net, activation_fn=None)

                with tf.compat.v1.variable_scope('Logits'):
                    end_points['PrePool'] = net
                    # pylint: disable=no-member
                    net = slim.avg_pool2d(net,
                                          net.get_shape()[1:3],
                                          padding='VALID',
                                          scope='AvgPool_1a_8x8')
                    net = slim.flatten(net)

                    net = slim.dropout(net,
                                       dropout_keep_prob,
                                       is_training=is_training,
                                       scope='Dropout')

                    end_points['PreLogitsFlatten'] = net

                net = slim.fully_connected(net,
                                           bottleneck_layer_size,
                                           activation_fn=None,
                                           scope='Bottleneck',
                                           reuse=False)

    return net, end_points