Exemplo n.º 1
0
    def fun(r,y,p):
        # Eigenvalues
        F=p[0]
        speed=p[1]
        # PREM gravity and density in layer
        if model =='prem':
            density_seis=lp.premdensity(r*csb_radius)/density0 # dimensionless density
        elif model == 'ohtaki':
            _,density_seis = lp.ohtaki(r*csb_radius)/density0
        gravity_seis=lp.premgravity(r*csb_radius)/csb_gravity # dimensionless gravity
        density_grad_seis=np.gradient(density_seis,r)
        gravity_grad_seis=np.gradient(gravity_seis,r)

        # r derivative of barodiffusion term
        term=gravity_seis*density_seis*np.exp(F*(csb_radius*r-icb_radius)/layer_thickness)* \
            (F*csb_radius/layer_thickness+2/r-y[3]/y[0]+ \
             gravity_grad_seis/gravity_seis+density_grad_seis/density_seis)/y[0]
        # liquidus (=dxi/dr)
        eq1=-(Lip*density_seis*gravity_seis+y[3]/y[0])*Rrho/(Lix*St*y[0])
        # oxygen eqn (=dj/dr)
        eq2=(Lip*Rrho*term/(Lix*St*Pe*Rvol) - eq1*(Rrho*speed+y[2]) - \
             2*y[1]*y[2]/r)/y[1]
        # temp eqn (=d2T/dr2)
        eq3=-Pe/Le*((eq2+2/r*y[2])/St + \
            (speed+2*Le/(r*Pe))*y[3])
        return np.vstack([y[3],eq1,eq2,eq3])
Exemplo n.º 2
0
def slurrydensity(radius,temp,xi,solidflux,mol_conc_oxygen_bulk, \
                  sedimentation_constant,mol_conc_SSi=8,model='prem'):
    # Density profile across slurry layer
    csb_radius = radius[-1]
    if model == 'prem':
        csb_density = premdensity(csb_radius)
    elif model == 'ohtaki':
        _, csb_density = ohtaki(csb_radius)
    # Solid fraction
    Kphi = getKphi(sedimentation_constant, radius, mol_conc_oxygen_bulk)
    phi = (-solidflux / Kphi)**(3 / 5)
    # Density fluctuations
    deltaV_solid_liquid = getchangevolmeltingFe(csb_density)
    temp_denFluc = -csb_density * alphaT * (temp - temp[-1])
    xi_denFluc = -csb_density * alphaXi * (xi - xi[-1])
    phi_denFluc = csb_density * (csb_density * deltaV_solid_liquid +
                                 alphaXi * xi) * (phi - phi[-1])
    density_fluc = temp_denFluc + xi_denFluc + phi_denFluc
    # Hydrostatic density
    slurry_gravity = premgravity(radius)
    density_hydrostatic=1/(slurry_gravity*(radius-csb_radius)/bulk_modulus+ \
                           1/csb_density)
    # Total density
    density_slurry = density_hydrostatic + density_fluc
    return (density_slurry, phi, temp_denFluc, xi_denFluc, phi_denFluc,
            density_fluc)
Exemplo n.º 3
0
def getLip(csb_radius, model='prem'):
    gravity = premgravity(csb_radius)
    if model == 'prem':
        density = premdensity(csb_radius)
    elif model == 'ohtaki':
        _, density = ohtaki(csb_radius)
    Lip = deltaV_solidFe_liquidFe * gravity * density * csb_radius / latent_heat
    return Lip, gravity, density
Exemplo n.º 4
0
def getKphi(sedimentation_constant,
            radius,
            mol_conc_oxygen_bulk,
            mol_conc_SSi=8):
    gravity = premgravity(radius)
    density = premdensity(radius)
    deltaV_solid_liquid = getchangevolmeltingFe(density[-1])
    Kphi = sedimentation_constant * gravity * density * deltaV_solid_liquid
    return Kphi
Exemplo n.º 5
0
def getdimensional(layer_thickness,Pe,St,Le, \
                   mol_conc_oxygen_bulk=8., mol_conc_SSi=8., \
                       self_diffusion=0.98e-8):
    csb_radius = getcsbradius(layer_thickness)
    density0 = premdensity(csb_radius)
    mass_conc_O, acore = getcsbmassoxygen(mol_conc_oxygen_bulk, mol_conc_SSi)
    freezing_speed = getfreezingspeedfromPe(Pe, csb_radius, self_diffusion)
    icb_heatflux = geticbheatflux(freezing_speed)
    csb_heatflux = getcsbheatflux(St, freezing_speed, density0, csb_radius)
    thermal_conductivity = getthermalconductivity(Le, density0)
    return (icb_heatflux, csb_heatflux, thermal_conductivity)
Exemplo n.º 6
0
def heatflux(radius,temp,xi,solidflux,phi,temp_grad,xi_grad,density_slurry, \
             icb_speed,icb_heatflux,layer_thickness,thermal_conductivity, \
             csb_heatflux,n):

    csb_radius = radius[-1]

    # GRAVITATIONAL POWER
    # Gravitational potential
    radius_psi = np.linspace(icb_radius, cmb_radius)
    gravity_psi = premgravity(radius_psi)
    psi = np.zeros(radius_psi.size)
    for i in range(radius_psi.size - 1):
        psi[i] = -integrate.simps(gravity_psi[i:], radius_psi[i:])

    # Slurry
    f = interpolate.interp1d(radius_psi, psi)
    psi_slurry = f(radius)
    oxygen_mass_slurry = 4 * np.pi * density_solidFe * layer_thickness**2 * icb_speed * xi[
        -1]
    mass_slurry = integrate.simps(density_slurry * 4 * np.pi * radius**2,
                                  radius)
    Qg_slurry = -alphaXi*oxygen_mass_slurry/mass_slurry* \
        integrate.simps(density_slurry*psi_slurry*4*np.pi*radius**2,radius)
    #    print('Change in oxygen mass (slurry) is {}'.format(oxygen_mass_slurry))
    #    print('Mass of slurry is {}'.format(mass_slurry))
    print('Qg slurry is {:.2f}TW'.format(Qg_slurry * 1e-12))

    # Outer core
    radius_oc = np.linspace(csb_radius, cmb_radius)
    psi_oc = f(radius_oc)
    surf = -psi[0] * alphaXi * density_slurry[-1] * xi[
        -1] * icb_speed * 4 * np.pi * csb_radius**2

    # Mass of OC
    density_oc = premdensity(radius_oc)
    mass_oc = integrate.simps(density_oc * 4 * np.pi * radius_oc**2, radius_oc)
    oxygen_mass_oc = -density_slurry[
        -1] * icb_speed * 4 * np.pi * csb_radius**2 * xi[-1] / mass_oc
    bulk = integrate.simps(
        alphaXi * psi_oc * oxygen_mass_oc * 4 * np.pi * radius_oc**2,
        radius_oc)
    #    print('Change in oxygen mass (outer core) is {}'.format(oxygen_mass_oc))
    #    print('Mass of outer core is {}'.format(mass_oc))
    print('Qg surface term in outer core is {:.2f}TW'.format(surf * 1e-12))
    print('Qg bulk term in outer core is {:.5f}TW'.format(bulk * 1e-12))

    # Total gravitational energy
    Qg_oc = surf + bulk
    Qg = Qg_slurry + Qg_oc
    print('Total Qg is {:.2f}TW'.format(Qg * 1e-12))

    # LATENT HEAT
    Ql = 4 * np.pi * icb_radius**2 * density_solidFe * icb_speed * latent_heat
    print('Total Ql is {:.2f}TW'.format(Ql * 1e-12))

    # SECULAR COOLING
    # Cooling rate
    csb_temp = temp[-1]
    cooling_rate, cmb_temp, temp_ad = get_cooling(icb_speed, csb_temp,
                                                  radius_oc, csb_radius,
                                                  cmb_radius)

    # Outer core
    Qs_oc = - heat_capacity*cooling_rate/cmb_temp \
            *integrate.simps(density_oc*temp_ad*4*np.pi*radius_oc**2,radius_oc)
    print('Qs in outer core is {:.2f}TW'.format(Qs_oc * 1e-12))

    # Slurry
    Qs_slurry = csb_heatflux - Qg_slurry - Ql
    print('Qs in slurry {:.2f}TW'.format(Qs_slurry * 1e-12))
    Qs = Qs_slurry + Qs_oc
    print('Total Qs is {:.2f}TW'.format(Qs * 1e-12))

    # CMB heat flux
    Q_cmb = csb_heatflux + Qs_oc + Qg_oc
    print('Qcmb is is {:.2f}TW'.format((Q_cmb) * 1e-12))

    return (Q_cmb, Qs, Qs_slurry, Qs_oc, Ql, Qg, Qg_oc, Qg_slurry,
            cooling_rate, cmb_temp, temp_ad)
Exemplo n.º 7
0
def plot_sensitivity(csb_temp,
                     csb_oxygen,
                     csb_temp0,
                     csb_oxy0,
                     saveOn,
                     aspectRatio=0.75):
    w, h = plt.figaspect(aspectRatio)
    fig1, (ax1, ax2) = plt.subplots(1, 2, figsize=(2 * w, h), sharey=True)

    # Temperature
    nTemp = csb_temp.size
    colors = plt.cm.OrRd(np.linspace(0.4, 1, nTemp))
    den_jump = []

    for i in range(nTemp):
        filename = 'sensitivity/temp_{:.0f}'.format(csb_temp[i]).replace(
            '.', '_')
        with open(filename, 'rb') as f:
            (radius, temp, xi, solidFlux, density) = pickle.load(f)
        if i == 0 or i == nTemp - 1:
            ax1.plot(radius * 1e-3,
                     density,
                     color=colors[i],
                     linewidth=2,
                     label=r'$T^{{sl}}=${:.0f} K'.format(csb_temp[i]))
        # Reference case
        elif csb_temp[i] == csb_temp0:
            den_jump0 = density[0] - density[-1]
            ax1.plot(radius * 1e-3,
                     density,
                     color='silver',
                     linewidth=2,
                     label=r'$T^\mathregular{{sl}}=$5457 K')
        else:
            ax1.plot(radius * 1e-3, density, color=colors[i])
        den_jump.append(density[0] - density[-1])

    # PREM
    density_prem = premdensity(radius)
    ax1.plot(radius * 1e-3, density_prem, 'k', linestyle='--')

    ax1.legend(fontsize=11.5)
    ax1.set_xlim([radius[0] * 1e-3, radius[-1] * 1e-3])
    ax1.set(xlabel="Radius (km)", ylabel="Density ($\mathrm{kg m^{-3}}$)")

    den_low = (den_jump[0] - den_jump0) / den_jump0 * 100
    den_high = (den_jump[-1] - den_jump0) / den_jump0 * 100
    print(
        'Temperature: Density jump ranges from {:.2f}% to {:.2f}% of reference'
        .format(den_low, den_high))

    # Oxygen
    nOxy = csb_oxygen.size
    colors = plt.cm.GnBu(np.linspace(0.4, 1, nOxy))
    den_jump = []

    for i in range(nOxy):
        filename = 'sensitivity/oxy_{:.1f}'.format(csb_oxygen[i]).replace(
            '.', '_')
        with open(filename, 'rb') as f:
            (radius, temp, xi, solidFlux, density) = pickle.load(f)
        if i == 0 or i == nOxy - 1:
            ax2.plot(radius * 1e-3,
                     density,
                     color=colors[i],
                     linewidth=2,
                     label=r'$\xi^{{sl}}=${:.1f} mol.%'.format(csb_oxygen[i]))
        # Reference case
        elif csb_oxygen[i] == csb_oxy0:
            den_jump0 = density[0] - density[-1]
            ax2.plot(radius * 1e-3,
                     density,
                     color='silver',
                     linewidth=2,
                     label=r'$\xi^{{sl}}=$8.0 mol.%')
        else:
            ax2.plot(radius * 1e-3, density, color=colors[i])
        den_jump.append(density[0] - density[-1])

    # PREM
    density_prem = premdensity(radius)
    ax2.plot(radius * 1e-3, density_prem, 'k', linestyle='--', label=r'PREM')

    ax2.legend(fontsize=11.5)
    ax2.set_xlim([radius[0] * 1e-3, radius[-1] * 1e-3])
    ax2.set(xlabel="Radius (km)")

    den_low = (den_jump[0] - den_jump0) / den_jump0 * 100
    den_high = (den_jump[-1] - den_jump0) / den_jump0 * 100
    print('Oxygen: Density jump ranges from {:.2f}% to {:.2f}% of reference'.
          format(den_low, den_high))

    ax1.set_title('(a)', x=0.95, y=1, fontsize=14)
    ax2.set_title('(b)', x=0.95, y=1, fontsize=14)

    if saveOn == 1:
        saveDir = 'figures/sensitivity/'
        if not os.path.exists(saveDir):
            os.makedirs(saveDir)
        fig1.savefig(saveDir + "temp_oxy.pdf",
                     format='pdf',
                     dpi=200,
                     bbox_inches='tight')
        fig1.savefig(saveDir + "temp_oxy.png",
                     format='png',
                     dpi=200,
                     bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + "temp_oxy.pdf"))
Exemplo n.º 8
0
def plot_CD(layer_thickness,
            thermal_conductivity,
            icb_heatflux,
            csb_heatflux,
            saveOn,
            figAspect=0.75):
    w, h = plt.figaspect(figAspect)
    # fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(1.25*w,1.25*h),sharex=True)
    fig = plt.figure(constrained_layout=True, figsize=(1.25 * w, 2 * h))
    spec = gridspec.GridSpec(ncols=1, nrows=3, figure=fig)
    ax1 = fig.add_subplot(spec[0, 0])
    ax2 = ax1.twinx()
    ax3 = fig.add_subplot(spec[1, 0], sharex=ax1)

    n = layer_thickness.size*thermal_conductivity.size \
        *icb_heatflux.size*csb_heatflux.size

    if n != 1:
        fig_label = [r'high $Le$', r'low $Le$']
        start = 0.2
        stop = 0.5
        cm_subsection = np.linspace(start, stop, n)
        colors = [cm.gray_r(x) for x in cm_subsection]

    # Load data
    k = 0
    for w, x, y, z in [(w, x, y, z) for w in layer_thickness
                       for x in icb_heatflux for y in csb_heatflux
                       for z in thermal_conductivity]:
        foldername, filename = get_outputDir(w, x, y, z)
        inputDir = "results/{}/{}/".format(foldername, filename)

        try:
            inputs, outputs, profiles = readdata(inputDir)
        except:
            print('{} does not exist'.format(inputDir))
            return

        # Calculate bulk modulus from PREM
        bulk_modulus = premvp(profiles.r)**2 * premdensity(profiles.r)

        # Calculate vp using slurry density and PREM bulk modulus
        vp_slurry = np.sqrt(bulk_modulus / profiles.density)

        # Calculate FVW P wave speed (Ohtaki et al. 2015, fig 11a)
        x = profiles.r / earth_radius
        vp_fvw = 3.3 * x[0] - 3.3 * x + 10.33

        max_diff = np.max((vp_fvw - vp_slurry * 1e-3) / vp_fvw * 100)
        print('Maximum difference with Ohtaki et al. (2015) is {:.2f}%'.format(
            max_diff))
        max_diff = np.max(
            (premvp(profiles.r) - vp_slurry) / premvp(profiles.r) * 100)
        print('Maximum difference with PREM is {:.2f}%'.format(max_diff))
        print('Density on slurry side of ICB is {:.2f}'.format(
            profiles.density[0]))
        density_jump = profiles.density[0] - profiles.density.iloc[-1]
        print('Density jump is {:.2f}'.format(density_jump))
        rho_bod = density_solidFe - profiles.density[0]
        print('Delta rho bod is {:.2f}'.format(rho_bod))
        rho_mod = rho_bod + density_jump
        print('Delta rho mod is {:.2f}'.format(rho_mod))

        # Plot P wave speed
        if n == 1:
            ax3.plot(profiles.r * 1e-3,
                     vp_slurry * 1e-3,
                     color='darkgrey',
                     lw=2,
                     label='slurry density')  #(km/s)
            ax3.vlines(profiles.r[0] * 1e-3,
                       vp_slurry[0] * 1e-3,
                       10.4,
                       color='darkgrey',
                       lw=2)
        else:
            ax3.plot(profiles.r * 1e-3,
                     vp_slurry * 1e-3,
                     color=colors[k],
                     lw=2,
                     label=fig_label[k])  #(km/s)
            ax3.vlines(profiles.r[0] * 1e-3,
                       vp_slurry[0] * 1e-3,
                       10.4,
                       color=colors[k],
                       lw=2)
        # Check density
        # ax3.plot(profiles.r*1e-3,premdensity(profiles.r),'k--')
        # ax3.plot(profiles.r*1e-3,profiles.density)
        k += 1

    # Plot temperature and composition
    ax1.plot(profiles.r * 1e-3,
             profiles.temp,
             lw=2,
             color='red',
             label='temperature')
    (mass_conc_O, acore) = getcsbmassoxygen(inputs.oxygen_bulk)
    acore = float(acore)
    ax2.plot(profiles.r * 1e-3,
             profiles.oxygen * acore / aO * 100,
             lw=2,
             color='blue',
             label='oxygen')

    # Plot FVW, PREM and AK135
    ax3.plot(profiles.r * 1e-3,
             vp_fvw,
             color='black',
             lw=2,
             ls=':',
             label='Ohtaki et al. (2015)')
    ax3.vlines(profiles.r[0] * 1e-3,
               vp_fvw[0],
               10.4,
               color='black',
               ls=':',
               lw=2)
    ax3.plot(profiles.r * 1e-3,
             premvp(profiles.r) * 1e-3,
             color='k',
             ls='--',
             label='PREM')
    ax3.vlines(profiles.r[0] * 1e-3,
               premvp(profiles.r[0]) * 1e-3,
               10.4,
               'k',
               linestyle='--')
    # ax3.plot(radius_ak135*1e-3,vp_ak135*1e-3,'k',label='ak135')
    # ax3.vlines(radius_ak135[0]*1e-3,vp_ak135[0]*1e-3,10.4, 'k')

    ax3.legend(fontsize=11.5, loc='upper right')
    ax1.set(ylabel="Temperature (K)")
    ax1.spines["right"].set_edgecolor('red')
    ax1.spines["right"].set_edgecolor('blue')
    ax1.yaxis.label.set_color('red')
    ax2.set(ylabel="Oxygen (mol.%)")
    ax2.spines["left"].set_edgecolor('red')
    ax2.spines["right"].set_edgecolor('blue')
    ax2.yaxis.label.set_color('blue')
    ax2.tick_params(axis='y', colors='blue')
    ax1.tick_params(axis='y', which='both', colors='red')
    ax3.set(xlabel="Radius (km)")
    ax3.set(ylabel="P wave speed (km/s)")
    ax3.set_xlim([1200, profiles.r.iloc[-1] * 1e-3])
    ax3.set_ylim([10.25, 10.4])
    major_xticks = np.arange(1200, 1370, 20)
    minor_xticks = np.arange(1200, 1370, 5)
    ax1.set_xticks(major_xticks)
    ax1.set_xticks(minor_xticks, minor=True)
    ax2.set_xticks(major_xticks)
    ax2.set_xticks(minor_xticks, minor=True)
    ax3.set_xticks(major_xticks)
    ax3.set_xticks(minor_xticks, minor=True)
    major_yticks = np.arange(5500, 5751, 100)
    minor_yticks = np.arange(5500, 5751, 20)
    ax1.set_yticks(major_yticks)
    ax1.set_yticks(minor_yticks, minor=True)
    ax1.grid(which='minor', alpha=0.2)
    ax1.grid(which='major', alpha=0.5)
    ax1.tick_params(which='major', length=7)
    ax1.tick_params(which='minor', length=3.5)
    # major_yticks = np.arange(6.5,8.1,0.5)
    # minor_yticks = np.arange(6.5,8.1,0.1)
    # ax2.set_yticks(major_yticks)
    # ax2.set_yticks(minor_yticks, minor=True)
    # ax2.grid(which='minor', alpha=0.2)
    # ax2.grid(which='major', alpha=0.5)
    # ax2.tick_params(which='major',length = 7)
    # ax2.tick_params(which='minor',length = 3.5)
    major_yticks = np.arange(10.25, 10.4, 0.05)
    minor_yticks = np.arange(10.25, 10.4, 0.01)
    ax3.set_yticks(major_yticks)
    ax3.set_yticks(minor_yticks, minor=True)
    ax3.grid(which='minor', alpha=0.2)
    ax3.grid(which='major', alpha=0.5)
    ax3.tick_params(which='major', length=7)
    ax3.tick_params(which='minor', length=3.5)

    if saveOn == 1:
        saveDir = 'figures/seismic/'
        if not os.path.exists(saveDir + foldername):
            os.makedirs(saveDir + foldername)
        fig.savefig(saveDir + foldername + "/" + filename + "_CD.pdf",
                    format='pdf',
                    dpi=200,
                    bbox_inches='tight')
        fig.savefig(saveDir + foldername + "/" + filename + "_CD.png",
                    format='png',
                    dpi=200,
                    bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + foldername + "/" +
                                          filename + "_CD.pdf"))
    plt.show()

    return profiles.r, vp_slurry, profiles.density, vp_fvw
Exemplo n.º 9
0
def plot_compare(layer_thickness,
                 csb_heatflux,
                 icb_heatflux,
                 thermal_conductivity,
                 saveOn,
                 saveTag,
                 mol_conc_oxygen_bulk=8.,
                 mol_conc_SSi=8.,
                 self_diffusion=0.98e-8,
                 aspectRatio=0.75,
                 tempMin=5400,
                 tempMax=5800,
                 xiMin=6,
                 xiMax=8,
                 jMin=-3.5e-7,
                 jMax=0,
                 denMin=11900,
                 denMax=12250):

    w, h = plt.figaspect(aspectRatio) * 2
    fig = plt.figure()
    fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,
                                                 2,
                                                 sharex=True,
                                                 figsize=(w, h))
    colors = plt.cm.tab10(np.linspace(0, 1, layer_thickness.size))
    plt.rcParams["axes.prop_cycle"] = plt.cycler("color", plt.cm.tab10.colors)

    for i in (range(layer_thickness.size)):
        foldername, filename = get_outputDir(layer_thickness[i], icb_heatflux,
                                             csb_heatflux,
                                             thermal_conductivity)
        inputDir = foldername + "/" + filename
        data_in, data_out, data_profiles = readdata(inputDir)

        radius = (data_profiles['r']) * 1e-3
        oxygen = data_profiles['oxygen']
        (mass_conc_O, acore) = getcsbmassoxygen(data_in.oxygen_bulk)
        acore = float(acore)
        ax1.plot(radius, data_profiles['temp'],
                 label='_nolegend_')  #, color=colors[i])
        ax2.plot(radius, oxygen * acore / aO * 100)  #, color=colors[i])
        ax3.plot(radius, data_profiles['solidflux'])  #,color=colors[i])
        ax4.plot(radius,
                 data_profiles['density'],
                 label='{:.0f} km'.format(layer_thickness[i] *
                                          1e-3))  #,color=colors[i])

    # Liquidus
    radius_liquidus = np.linspace(icb_radius, icb_radius + 400e3)
    temp_liquidus = liquidus(radius_liquidus)
    ax1.plot(radius_liquidus * 1e-3,
             temp_liquidus,
             'k--',
             label='Liquidus (Davies et al. 2015)')

    # PREM
    radius_prem = np.linspace(icb_radius, icb_radius + 400e3)
    density_prem = premdensity(radius_prem)
    ax4.plot(radius_prem * 1e-3, density_prem, 'k--', label='PREM')
    ax4.set(xlabel="Radius (km)", ylabel="Density ($\mathrm{kg m^{-3}}$)")

    # Axis titles
    ax1.set(ylabel="Temperature (K)")
    ax2.set(ylabel="Oxygen (mol.%)")
    ax3.set(xlabel="Radius (km)",
            ylabel="Solid flux ($\mathrm{kg m^{-2} s^{-1}}$)")

    # Legend
    ax1.legend(fontsize=11.5, loc=1)
    ax4.legend(fontsize=11.5, loc=1)

    # Axis limits
    ax1.set_ylim([tempMin, tempMax])
    ax2.set_ylim([xiMin, xiMax])
    ax3.set_ylim([jMin, jMax])
    ax4.set_ylim([denMin, denMax])

    ax1.set_xlim([1220, (icb_radius + 400e3) * 1e-3])

    # Subfigure labels
    ax1.text(1225, tempMax - 23, '(a)', fontsize=14)
    ax2.text(1225, xiMax - 0.12, '(b)', fontsize=14)
    ax3.text(1225, jMax - .2e-7, '(c)', fontsize=14)
    ax4.text(1225, denMax - 20, '(d)', fontsize=14)

    plt.tight_layout()

    if saveOn == 1:
        if not os.path.exists('figures/profiles'):
            os.makedirs('figures/profiles')
        saveName = foldername + "_" + filename + saveTag
        plt.savefig('figures/profiles/' + saveName + '.pdf',
                    format='pdf',
                    dpi=200)

    plt.show()
Exemplo n.º 10
0
def plot_seismic_dark(layer_thickness,
                      thermal_conductivity,
                      icb_heatflux,
                      csb_heatflux,
                      saveOn,
                      figAspect=0.75):
    w, h = plt.figaspect(figAspect)
    fig, ax = plt.subplots(1, 1, figsize=(1.25 * w, 1.25 * h))

    n = layer_thickness.size*thermal_conductivity.size \
        *icb_heatflux.size*csb_heatflux.size

    if n != 1:
        fig_label = [r'high $Le$', r'low $Le$']
        start = 0.2
        stop = 0.5
        cm_subsection = np.linspace(start, stop, n)
        colors = [cm.gray_r(x) for x in cm_subsection]

    # Load data
    k = 0
    for w, x, y, z in [(w, x, y, z) for w in layer_thickness
                       for x in icb_heatflux for y in csb_heatflux
                       for z in thermal_conductivity]:
        foldername, filename = get_outputDir(w, x, y, z)
        inputDir = "results/{}/{}/".format(foldername, filename)

        try:
            inputs, outputs, profiles = readdata(inputDir)
        except:
            print('{} does not exist'.format(inputDir))
            return

        # Calculate bulk modulus from PREM
        bulk_modulus = premvp(profiles.r)**2 * premdensity(profiles.r)

        # Calculate vp using slurry density and PREM bulk modulus
        vp_slurry = np.sqrt(bulk_modulus / profiles.density)

        # Calculate FVW P wave speed (Ohtaki et al. 2015, fig 11a)
        x = profiles.r / earth_radius
        vp_fvw = 3.3 * x[0] - 3.3 * x + 10.33

        max_diff = np.max((vp_fvw - vp_slurry * 1e-3) / vp_fvw * 100)
        print('Maximum difference with Ohtaki et al. (2015) is {:.2f}%'.format(
            max_diff))
        max_diff = np.max(
            (premvp(profiles.r) - vp_slurry) / premvp(profiles.r) * 100)
        print('Maximum difference with PREM is {:.2f}%'.format(max_diff))
        print('Density on slurry side of ICB is {:.2f}'.format(
            profiles.density[0]))
        density_jump = profiles.density[0] - profiles.density.iloc[-1]
        print('Density jump is {:.2f}'.format(density_jump))
        rho_bod = density_solidFe - profiles.density[0]
        print('Delta rho bod is {:.2f}'.format(rho_bod))
        rho_mod = rho_bod + density_jump
        print('Delta rho mod is {:.2f}'.format(rho_mod))

        # Plot P wave speed
        if n == 1:
            ax.plot(profiles.r * 1e-3,
                    vp_slurry * 1e-3,
                    color='darkgrey',
                    lw=2,
                    label='slurry')  #(km/s)
            ax.vlines(profiles.r[0] * 1e-3,
                      vp_slurry[0] * 1e-3,
                      10.4,
                      color='darkgrey',
                      lw=2)
        else:
            ax.plot(profiles.r * 1e-3,
                    vp_slurry * 1e-3,
                    color=colors[k],
                    lw=2,
                    label=fig_label[k])  #(km/s)
            ax.vlines(profiles.r[0] * 1e-3,
                      vp_slurry[0] * 1e-3,
                      10.4,
                      color=colors[k],
                      lw=2)
        # Check density
        # ax1.plot(profiles.r*1e-3,premdensity(profiles.r),'k--')
        # ax1.plot(profiles.r*1e-3,profiles.density)
        k += 1

    # Look up AK135
    radius_ak135 = ak135radius()
    vp_ak135 = ak135vp(radius_ak135)

    ax.plot(profiles.r * 1e-3,
            vp_fvw,
            color='blue',
            lw=2,
            ls=':',
            label='Ohtaki et al. (2015)')
    ax.vlines(profiles.r[0] * 1e-3,
              vp_fvw[0],
              10.4,
              color='blue',
              lw=2,
              ls=':')
    ax.plot(profiles.r * 1e-3,
            premvp(profiles.r) * 1e-3,
            color='white',
            ls='--',
            label='PREM')
    ax.vlines(profiles.r[0] * 1e-3,
              premvp(profiles.r[0]) * 1e-3,
              10.4,
              'white',
              linestyle='--')
    ax.plot(radius_ak135 * 1e-3, vp_ak135 * 1e-3, 'white', label='ak135')
    ax.vlines(radius_ak135[0] * 1e-3, vp_ak135[0] * 1e-3, 10.4, 'white')

    ax.legend(fontsize=11.5)
    ax.set(xlabel="Radius (km)")
    ax.set(ylabel="P wave speed (km/s)")
    ax.set_xlim([1200, profiles.r.iloc[-1] * 1e-3])
    ax.set_ylim([10.1, 10.4])
    plt.yticks(np.arange(10.1, 10.41, 0.1))

    if saveOn == 1:
        saveDir = 'figures/seismic/'
        if not os.path.exists(saveDir + foldername):
            os.makedirs(saveDir + foldername)
        fig.savefig(saveDir + foldername + "/" + filename + "_dark.pdf",
                    format='pdf',
                    dpi=200,
                    bbox_inches='tight')
        fig.savefig(saveDir + foldername + "/" + filename + "_dark.png",
                    format='png',
                    dpi=200,
                    bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + foldername + "/" +
                                          filename + ".pdf"))
    plt.show()

    return profiles.r, vp_slurry, profiles.density
Exemplo n.º 11
0
def plot_profile(inputDir):

    # Read data
    try:
        # print(inputDir)
        inputs, outputs, profiles = readdata(inputDir)
    except:
        print('Folder does not exist')

    # print('State = {}'.format(outputs.state.iloc[0]))

    # Plots
    csb_radius = pd.to_numeric(profiles.r.iloc[-1])
    radius = (profiles.r) * 1e-3
    w, h = plt.figaspect(0.75) * 2
    # Temperature
    fig1 = plt.figure
    fig1, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,
                                                  2,
                                                  sharex=True,
                                                  figsize=(w, h))
    ax1.plot(radius, profiles.temp)
    ax1.set(ylabel="Temperature (K)")

    # Oxygen
    (mass_conc_O, acore) = getcsbmassoxygen(inputs.oxygen_bulk)
    acore = float(acore)
    ax2.plot(radius, profiles.oxygen * acore / aO * 100)
    ax2.set(ylabel="Oxygen (mol.%)")

    ax3.plot(radius, profiles.solidflux)
    ax3.set(xlabel="Radius (km)",
            ylabel="Solid flux ($\mathrm{kg m^{-2} s^{-1}}$)")

    # Density
    ax4.plot(radius, profiles.density)
    ax4.set(xlabel="Radius (km)", ylabel="Density ($\mathrm{kg m^{-3}}$)")

    # Liquidus
    radius_liquidus = np.linspace(icb_radius, csb_radius)
    temp_liquidus = liquidus(radius_liquidus)
    ax1.plot(radius_liquidus * 1e-3,
             temp_liquidus,
             'k--',
             label='Liquidus (Davies et al. 2015)')
    ax1.legend()

    # Seismology
    radius_prem = np.linspace(icb_radius, csb_radius)
    density_prem = premdensity(radius_prem)
    ax4.plot(radius_prem * 1e-3, density_prem, 'k--')
    ax4.set(xlabel="Radius (km)", ylabel="Density ($\mathrm{kg m^{-3}}$)")

    ax1.set(ylabel="Temperature (K)")
    ax2.set(ylabel="Oxygen (mol.%)")
    ax3.set(xlabel="Radius (km)",
            ylabel="Solid flux ($\mathrm{kg m^{-2} s^{-1}}$)")

    ax1.set_xlim([radius.iloc[0], radius.iloc[-1]])

    plt.tight_layout()

    plt.show()
Exemplo n.º 12
0
def plot_sedimentation(sed_con,
                       saveOn,
                       mol_conc_oxygen_bulk=8,
                       figAspect=0.75):
    nSed = sed_con.size
    colors = plt.cm.gnuplot_r(np.linspace(0.4, 1, nSed))

    w, h = plt.figaspect(figAspect)
    fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(w, 2 * h))

    # Format function for scientific notation in legend
    my_fun = mticker.ScalarFormatter(useOffset=False, useMathText=True)

    for i in range(nSed):
        filename = 'sensitivity/sed_{:.0f}'.format(np.log10(
            sed_con[i])).replace('.', '_')
        with open(filename, 'rb') as f:
            (radius, temp, xi, solidFlux, density) = pickle.load(f)
        # FIX:
        # ax1.plot(radius*1e-3,density,label=r'$k_\phi =$ {} $\mathrm{{kgm^{{-3}}s}}$'.format(my_fun.format_data(sed_con[i])),
        #        color=colors[i])
        ax1.plot(radius * 1e-3,
                 density,
                 label=r'$k_\phi = {} \mathrm{{kgm^{{-3}}s}}$'.format(
                     my_fun.format_data(sed_con[i])).replace('{',
                                                             '{{').replace(
                                                                 '}', '}}'),
                 color=colors[i])
        ax1.plot(radius * 1e-3, density, color=colors[i])
        Kphi = getKphi(sed_con[i], radius, mol_conc_oxygen_bulk)
        phi = getphi(Kphi, solidFlux)
        ax2.plot(radius * 1e-3, phi, color=colors[i])

    # PREM
    density_prem = premdensity(radius)
    ax1.plot(radius * 1e-3, density_prem, 'k--', label='PREM')
    ax1.set(ylabel="Density ($\mathrm{kg m^{-3}}$)")  #,yscale="log")
    ax2.set(xlabel="Radius (km)", ylabel="Solid fraction", yscale='log')
    ax2.axhline(0.6, color='k', linestyle='--')  # rheological transition
    # labels = ['$k_\phi =${} $\mathrm{{kgm^{{-3}}s}}$'.format(my_fun.format_data(sed_con[i])),
    # '1','2','3','4']
    fig.legend(loc='center right', bbox_to_anchor=(1.4, 0.5), fontsize=11.5)
    ax1.set_xlim([radius[0] * 1e-3, radius[-1] * 1e-3])
    ax2.set_ylim([1e-4, 1])

    ax1.set_title('(a)', x=0.95, y=1, fontsize=14)
    ax2.set_title('(b)', x=0.95, y=1, fontsize=14)

    if saveOn == 1:
        saveDir = 'figures/sensitivity/'
        if not os.path.exists(saveDir):
            os.makedirs(saveDir)
        fig.savefig(saveDir + "sedimentation.pdf",
                    format='pdf',
                    dpi=200,
                    bbox_inches='tight')
        fig.savefig(saveDir + "sedimentation.png",
                    format='png',
                    dpi=200,
                    bbox_inches='tight')
        print('Figure saved as {}'.format(saveDir + "sedimentation.pdf"))
    plt.show()